ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc2 Unicode version

Theorem prmuloc2 7375
Description: Positive reals are multiplicatively located. This is a variation of prmuloc 7374 which only constructs one (named) point and is therefore often easier to work with. It states that given a ratio  B, there are elements of the lower and upper cut which have exactly that ratio between them. (Contributed by Jim Kingdon, 28-Dec-2019.)
Assertion
Ref Expression
prmuloc2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Distinct variable groups:    x, B    x, L    x, U

Proof of Theorem prmuloc2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prmuloc 7374 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  Q.  E. y  e. 
Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) ) )
2 nfv 1508 . . 3  |-  F/ x
( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )
3 nfre1 2476 . . 3  |-  F/ x E. x  e.  L  ( x  .Q  B
)  e.  U
4 simpr1 987 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  x  e.  L )
5 simpr3 989 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  .Q  1Q )  <Q  ( x  .Q  B ) )
6 simplrr 525 . . . . . . . . . . 11  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  Q. )
7 mulidnq 7197 . . . . . . . . . . 11  |-  ( y  e.  Q.  ->  (
y  .Q  1Q )  =  y )
8 breq1 3932 . . . . . . . . . . 11  |-  ( ( y  .Q  1Q )  =  y  ->  (
( y  .Q  1Q )  <Q  ( x  .Q  B )  <->  y  <Q  ( x  .Q  B ) ) )
96, 7, 83syl 17 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( ( y  .Q  1Q )  <Q  (
x  .Q  B )  <-> 
y  <Q  ( x  .Q  B ) ) )
105, 9mpbid 146 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  <Q  ( x  .Q  B ) )
11 simplll 522 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  <. L ,  U >.  e. 
P. )
12 simpr2 988 . . . . . . . . . 10  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
y  e.  U )
13 prcunqu 7293 . . . . . . . . . 10  |-  ( (
<. L ,  U >.  e. 
P.  /\  y  e.  U )  ->  (
y  <Q  ( x  .Q  B )  ->  (
x  .Q  B )  e.  U ) )
1411, 12, 13syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( y  <Q  (
x  .Q  B )  ->  ( x  .Q  B )  e.  U
) )
1510, 14mpd 13 . . . . . . . 8  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  -> 
( x  .Q  B
)  e.  U )
16 rspe 2481 . . . . . . . 8  |-  ( ( x  e.  L  /\  ( x  .Q  B
)  e.  U )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
174, 15, 16syl2anc 408 . . . . . . 7  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  ( x  e.  Q.  /\  y  e.  Q. )
)  /\  ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U )
1817ex 114 . . . . . 6  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  (
x  e.  Q.  /\  y  e.  Q. )
)  ->  ( (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
1918anassrs 397 . . . . 5  |-  ( ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  /\  y  e.  Q. )  ->  ( ( x  e.  L  /\  y  e.  U  /\  (
y  .Q  1Q ) 
<Q  ( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
2019rexlimdva 2549 . . . 4  |-  ( ( ( <. L ,  U >.  e.  P.  /\  1Q  <Q  B )  /\  x  e.  Q. )  ->  ( E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) )
2120ex 114 . . 3  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( x  e.  Q.  ->  ( E. y  e.  Q.  (
x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q  ( x  .Q  B ) )  ->  E. x  e.  L  ( x  .Q  B
)  e.  U ) ) )
222, 3, 21rexlimd 2546 . 2  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  ( E. x  e.  Q.  E. y  e.  Q.  ( x  e.  L  /\  y  e.  U  /\  ( y  .Q  1Q )  <Q 
( x  .Q  B
) )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
) )
231, 22mpd 13 1  |-  ( (
<. L ,  U >.  e. 
P.  /\  1Q  <Q  B )  ->  E. x  e.  L  ( x  .Q  B )  e.  U
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417   <.cop 3530   class class class wbr 3929  (class class class)co 5774   Q.cnq 7088   1Qc1q 7089    .Q cmq 7091    <Q cltq 7093   P.cnp 7099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274
This theorem is referenced by:  recexprlem1ssl  7441  recexprlem1ssu  7442
  Copyright terms: Public domain W3C validator