ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssl Unicode version

Theorem recexprlem1ssl 6789
Description: The lower cut of one is a subset of the lower cut of  A  .P.  B. Lemma for recexpr 6794. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlem1ssl  |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlem1ssl
Dummy variables  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1prl 6711 . . . 4  |-  ( 1st `  1P )  =  {
w  |  w  <Q  1Q }
21abeq2i 2164 . . 3  |-  ( w  e.  ( 1st `  1P ) 
<->  w  <Q  1Q )
3 rec1nq 6551 . . . . . . 7  |-  ( *Q
`  1Q )  =  1Q
4 ltrnqi 6577 . . . . . . 7  |-  ( w 
<Q  1Q  ->  ( *Q `  1Q )  <Q  ( *Q `  w ) )
53, 4syl5eqbrr 3826 . . . . . 6  |-  ( w 
<Q  1Q  ->  1Q  <Q  ( *Q `  w ) )
6 prop 6631 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
7 prmuloc2 6723 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  1Q  <Q  ( *Q `  w ) )  ->  E. v  e.  ( 1st `  A ) ( v  .Q  ( *Q
`  w ) )  e.  ( 2nd `  A
) )
86, 7sylan 271 . . . . . 6  |-  ( ( A  e.  P.  /\  1Q  <Q  ( *Q `  w ) )  ->  E. v  e.  ( 1st `  A ) ( v  .Q  ( *Q
`  w ) )  e.  ( 2nd `  A
) )
95, 8sylan2 274 . . . . 5  |-  ( ( A  e.  P.  /\  w  <Q  1Q )  ->  E. v  e.  ( 1st `  A ) ( v  .Q  ( *Q
`  w ) )  e.  ( 2nd `  A
) )
10 prnmaxl 6644 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  ( 1st `  A ) )  ->  E. z  e.  ( 1st `  A ) v 
<Q  z )
116, 10sylan 271 . . . . . . 7  |-  ( ( A  e.  P.  /\  v  e.  ( 1st `  A ) )  ->  E. z  e.  ( 1st `  A ) v 
<Q  z )
1211ad2ant2r 486 . . . . . 6  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) ) )  ->  E. z  e.  ( 1st `  A
) v  <Q  z
)
13 elprnql 6637 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  ( 1st `  A ) )  -> 
v  e.  Q. )
146, 13sylan 271 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  v  e.  ( 1st `  A ) )  -> 
v  e.  Q. )
1514ad2ant2r 486 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) ) )  ->  v  e.  Q. )
16153adant3 935 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  v  e.  Q. )
17 simp1r 940 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  w  <Q  1Q )
18 ltrelnq 6521 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
1918brel 4420 . . . . . . . . . . . . 13  |-  ( w 
<Q  1Q  ->  ( w  e.  Q.  /\  1Q  e.  Q. ) )
2019simpld 109 . . . . . . . . . . . 12  |-  ( w 
<Q  1Q  ->  w  e.  Q. )
2117, 20syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  w  e.  Q. )
22 simp3 917 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  v  <Q  z )
23 simp2r 942 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  (
v  .Q  ( *Q
`  w ) )  e.  ( 2nd `  A
) )
24 simpr 107 . . . . . . . . . . . 12  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )
25 ltrnqi 6577 . . . . . . . . . . . . . 14  |-  ( v 
<Q  z  ->  ( *Q
`  z )  <Q 
( *Q `  v
) )
26 ltmnqg 6557 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  .Q  f )  <Q  (
h  .Q  g ) ) )
2726adantl 266 . . . . . . . . . . . . . . 15  |-  ( ( ( ( v  e. 
Q.  /\  w  e.  Q. )  /\  (
v  <Q  z  /\  (
v  .Q  ( *Q
`  w ) )  e.  ( 2nd `  A
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  .Q  f )  <Q  (
h  .Q  g ) ) )
28 simprl 491 . . . . . . . . . . . . . . . 16  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
v  <Q  z )
2918brel 4420 . . . . . . . . . . . . . . . . 17  |-  ( v 
<Q  z  ->  ( v  e.  Q.  /\  z  e.  Q. ) )
3029simprd 111 . . . . . . . . . . . . . . . 16  |-  ( v 
<Q  z  ->  z  e. 
Q. )
31 recclnq 6548 . . . . . . . . . . . . . . . 16  |-  ( z  e.  Q.  ->  ( *Q `  z )  e. 
Q. )
3228, 30, 313syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( *Q `  z
)  e.  Q. )
33 recclnq 6548 . . . . . . . . . . . . . . . 16  |-  ( v  e.  Q.  ->  ( *Q `  v )  e. 
Q. )
3433ad2antrr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( *Q `  v
)  e.  Q. )
35 simplr 490 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  ->  w  e.  Q. )
36 mulcomnqg 6539 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  .Q  g
)  =  ( g  .Q  f ) )
3736adantl 266 . . . . . . . . . . . . . . 15  |-  ( ( ( ( v  e. 
Q.  /\  w  e.  Q. )  /\  (
v  <Q  z  /\  (
v  .Q  ( *Q
`  w ) )  e.  ( 2nd `  A
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  .Q  g )  =  ( g  .Q  f ) )
3827, 32, 34, 35, 37caovord2d 5698 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( *Q `  z )  <Q  ( *Q `  v )  <->  ( ( *Q `  z )  .Q  w )  <Q  (
( *Q `  v
)  .Q  w ) ) )
3925, 38syl5ib 147 . . . . . . . . . . . . 13  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( v  <Q  z  ->  ( ( *Q `  z )  .Q  w
)  <Q  ( ( *Q
`  v )  .Q  w ) ) )
40 1nq 6522 . . . . . . . . . . . . . . . . . 18  |-  1Q  e.  Q.
41 mulidnq 6545 . . . . . . . . . . . . . . . . . 18  |-  ( 1Q  e.  Q.  ->  ( 1Q  .Q  1Q )  =  1Q )
4240, 41ax-mp 7 . . . . . . . . . . . . . . . . 17  |-  ( 1Q 
.Q  1Q )  =  1Q
43 mulcomnqg 6539 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( v  e.  Q.  /\  ( *Q `  v )  e.  Q. )  -> 
( v  .Q  ( *Q `  v ) )  =  ( ( *Q
`  v )  .Q  v ) )
4433, 43mpdan 406 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  e.  Q.  ->  (
v  .Q  ( *Q
`  v ) )  =  ( ( *Q
`  v )  .Q  v ) )
45 recidnq 6549 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  e.  Q.  ->  (
v  .Q  ( *Q
`  v ) )  =  1Q )
4644, 45eqtr3d 2090 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  e.  Q.  ->  (
( *Q `  v
)  .Q  v )  =  1Q )
47 recidnq 6549 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  Q.  ->  (
w  .Q  ( *Q
`  w ) )  =  1Q )
4846, 47oveqan12d 5559 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( ( *Q
`  v )  .Q  v )  .Q  (
w  .Q  ( *Q
`  w ) ) )  =  ( 1Q 
.Q  1Q ) )
4948adantr 265 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( ( *Q
`  v )  .Q  v )  .Q  (
w  .Q  ( *Q
`  w ) ) )  =  ( 1Q 
.Q  1Q ) )
50 simpll 489 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
v  e.  Q. )
51 mulassnqg 6540 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
( f  .Q  g
)  .Q  h )  =  ( f  .Q  ( g  .Q  h
) ) )
5251adantl 266 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( v  e. 
Q.  /\  w  e.  Q. )  /\  (
v  <Q  z  /\  (
v  .Q  ( *Q
`  w ) )  e.  ( 2nd `  A
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( (
f  .Q  g )  .Q  h )  =  ( f  .Q  (
g  .Q  h ) ) )
53 recclnq 6548 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  Q.  ->  ( *Q `  w )  e. 
Q. )
5435, 53syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( *Q `  w
)  e.  Q. )
55 mulclnq 6532 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  .Q  g
)  e.  Q. )
5655adantl 266 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( v  e. 
Q.  /\  w  e.  Q. )  /\  (
v  <Q  z  /\  (
v  .Q  ( *Q
`  w ) )  e.  ( 2nd `  A
) ) )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  .Q  g )  e.  Q. )
5734, 50, 35, 37, 52, 54, 56caov4d 5713 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( ( *Q
`  v )  .Q  v )  .Q  (
w  .Q  ( *Q
`  w ) ) )  =  ( ( ( *Q `  v
)  .Q  w )  .Q  ( v  .Q  ( *Q `  w
) ) ) )
5849, 57eqtr3d 2090 . . . . . . . . . . . . . . . . 17  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( 1Q  .Q  1Q )  =  ( (
( *Q `  v
)  .Q  w )  .Q  ( v  .Q  ( *Q `  w
) ) ) )
5942, 58syl5reqr 2103 . . . . . . . . . . . . . . . 16  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( ( *Q
`  v )  .Q  w )  .Q  (
v  .Q  ( *Q
`  w ) ) )  =  1Q )
60 mulclnq 6532 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( *Q `  v
)  e.  Q.  /\  w  e.  Q. )  ->  ( ( *Q `  v )  .Q  w
)  e.  Q. )
6133, 60sylan 271 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( *Q `  v )  .Q  w
)  e.  Q. )
62 mulclnq 6532 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  Q.  /\  ( *Q `  w )  e.  Q. )  -> 
( v  .Q  ( *Q `  w ) )  e.  Q. )
6353, 62sylan2 274 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( v  .Q  ( *Q `  w ) )  e.  Q. )
64 recmulnqg 6547 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( *Q `  v )  .Q  w
)  e.  Q.  /\  ( v  .Q  ( *Q `  w ) )  e.  Q. )  -> 
( ( *Q `  ( ( *Q `  v )  .Q  w
) )  =  ( v  .Q  ( *Q
`  w ) )  <-> 
( ( ( *Q
`  v )  .Q  w )  .Q  (
v  .Q  ( *Q
`  w ) ) )  =  1Q ) )
6561, 63, 64syl2anc 397 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( *Q `  ( ( *Q `  v )  .Q  w
) )  =  ( v  .Q  ( *Q
`  w ) )  <-> 
( ( ( *Q
`  v )  .Q  w )  .Q  (
v  .Q  ( *Q
`  w ) ) )  =  1Q ) )
6665adantr 265 . . . . . . . . . . . . . . . 16  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( *Q `  ( ( *Q `  v )  .Q  w
) )  =  ( v  .Q  ( *Q
`  w ) )  <-> 
( ( ( *Q
`  v )  .Q  w )  .Q  (
v  .Q  ( *Q
`  w ) ) )  =  1Q ) )
6759, 66mpbird 160 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( *Q `  (
( *Q `  v
)  .Q  w ) )  =  ( v  .Q  ( *Q `  w ) ) )
6867eleq1d 2122 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  ( 2nd `  A )  <-> 
( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )
6968biimprd 151 . . . . . . . . . . . . 13  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A )  ->  ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  ( 2nd `  A ) ) )
70 breq2 3796 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  (
( ( *Q `  z )  .Q  w
)  <Q  y  <->  ( ( *Q `  z )  .Q  w )  <Q  (
( *Q `  v
)  .Q  w ) ) )
71 fveq2 5206 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  ( *Q `  y )  =  ( *Q `  (
( *Q `  v
)  .Q  w ) ) )
7271eleq1d 2122 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  (
( *Q `  y
)  e.  ( 2nd `  A )  <->  ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  ( 2nd `  A ) ) )
7370, 72anbi12d 450 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  (
( ( ( *Q
`  z )  .Q  w )  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( (
( *Q `  z
)  .Q  w ) 
<Q  ( ( *Q `  v )  .Q  w
)  /\  ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  ( 2nd `  A ) ) ) )
7473spcegv 2658 . . . . . . . . . . . . . . . 16  |-  ( ( ( *Q `  v
)  .Q  w )  e.  Q.  ->  (
( ( ( *Q
`  z )  .Q  w )  <Q  (
( *Q `  v
)  .Q  w )  /\  ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  ( 2nd `  A ) )  ->  E. y
( ( ( *Q
`  z )  .Q  w )  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
7561, 74syl 14 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( ( ( *Q `  z )  .Q  w )  <Q 
( ( *Q `  v )  .Q  w
)  /\  ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  ( 2nd `  A ) )  ->  E. y
( ( ( *Q
`  z )  .Q  w )  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
76 recexpr.1 . . . . . . . . . . . . . . . 16  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
7776recexprlemell 6778 . . . . . . . . . . . . . . 15  |-  ( ( ( *Q `  z
)  .Q  w )  e.  ( 1st `  B
)  <->  E. y ( ( ( *Q `  z
)  .Q  w ) 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
7875, 77syl6ibr 155 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( ( ( *Q `  z )  .Q  w )  <Q 
( ( *Q `  v )  .Q  w
)  /\  ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  ( 2nd `  A ) )  ->  ( ( *Q `  z )  .Q  w )  e.  ( 1st `  B ) ) )
7978adantr 265 . . . . . . . . . . . . 13  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( ( ( *Q `  z )  .Q  w )  <Q 
( ( *Q `  v )  .Q  w
)  /\  ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  ( 2nd `  A ) )  ->  ( ( *Q `  z )  .Q  w )  e.  ( 1st `  B ) ) )
8039, 69, 79syl2and 283 . . . . . . . . . . . 12  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( v  <Q 
z  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  ->  ( ( *Q `  z )  .Q  w )  e.  ( 1st `  B ) ) )
8124, 80mpd 13 . . . . . . . . . . 11  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  ( v  .Q  ( *Q `  w ) )  e.  ( 2nd `  A
) ) )  -> 
( ( *Q `  z )  .Q  w
)  e.  ( 1st `  B ) )
8216, 21, 22, 23, 81syl22anc 1147 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  (
( *Q `  z
)  .Q  w )  e.  ( 1st `  B
) )
83303ad2ant3 938 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  z  e.  Q. )
84 mulidnq 6545 . . . . . . . . . . . . . 14  |-  ( w  e.  Q.  ->  (
w  .Q  1Q )  =  w )
85 mulcomnqg 6539 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  Q.  /\  1Q  e.  Q. )  -> 
( w  .Q  1Q )  =  ( 1Q  .Q  w ) )
8640, 85mpan2 409 . . . . . . . . . . . . . 14  |-  ( w  e.  Q.  ->  (
w  .Q  1Q )  =  ( 1Q  .Q  w ) )
8784, 86eqtr3d 2090 . . . . . . . . . . . . 13  |-  ( w  e.  Q.  ->  w  =  ( 1Q  .Q  w ) )
8887adantl 266 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  w  =  ( 1Q 
.Q  w ) )
89 recidnq 6549 . . . . . . . . . . . . . 14  |-  ( z  e.  Q.  ->  (
z  .Q  ( *Q
`  z ) )  =  1Q )
9089oveq1d 5555 . . . . . . . . . . . . 13  |-  ( z  e.  Q.  ->  (
( z  .Q  ( *Q `  z ) )  .Q  w )  =  ( 1Q  .Q  w
) )
9190adantr 265 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( ( z  .Q  ( *Q `  z
) )  .Q  w
)  =  ( 1Q 
.Q  w ) )
92 mulassnqg 6540 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Q.  /\  ( *Q `  z )  e.  Q.  /\  w  e.  Q. )  ->  (
( z  .Q  ( *Q `  z ) )  .Q  w )  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) )
9331, 92syl3an2 1180 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
( z  .Q  ( *Q `  z ) )  .Q  w )  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) )
94933anidm12 1203 . . . . . . . . . . . 12  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( ( z  .Q  ( *Q `  z
) )  .Q  w
)  =  ( z  .Q  ( ( *Q
`  z )  .Q  w ) ) )
9588, 91, 943eqtr2d 2094 . . . . . . . . . . 11  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  w  =  ( z  .Q  ( ( *Q
`  z )  .Q  w ) ) )
9683, 21, 95syl2anc 397 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  w  =  ( z  .Q  ( ( *Q `  z )  .Q  w
) ) )
97 oveq2 5548 . . . . . . . . . . . 12  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  (
z  .Q  x )  =  ( z  .Q  ( ( *Q `  z )  .Q  w
) ) )
9897eqeq2d 2067 . . . . . . . . . . 11  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  (
w  =  ( z  .Q  x )  <->  w  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) ) )
9998rspcev 2673 . . . . . . . . . 10  |-  ( ( ( ( *Q `  z )  .Q  w
)  e.  ( 1st `  B )  /\  w  =  ( z  .Q  ( ( *Q `  z )  .Q  w
) ) )  ->  E. x  e.  ( 1st `  B ) w  =  ( z  .Q  x ) )
10082, 96, 99syl2anc 397 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) )  /\  v  <Q 
z )  ->  E. x  e.  ( 1st `  B
) w  =  ( z  .Q  x ) )
1011003expia 1117 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) ) )  ->  (
v  <Q  z  ->  E. x  e.  ( 1st `  B
) w  =  ( z  .Q  x ) ) )
102101reximdv 2437 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) ) )  ->  ( E. z  e.  ( 1st `  A ) v 
<Q  z  ->  E. z  e.  ( 1st `  A
) E. x  e.  ( 1st `  B
) w  =  ( z  .Q  x ) ) )
10376recexprlempr 6788 . . . . . . . . 9  |-  ( A  e.  P.  ->  B  e.  P. )
104 df-imp 6625 . . . . . . . . . 10  |-  .P.  =  ( y  e.  P. ,  w  e.  P.  |->  <. { u  e.  Q.  |  E. f  e.  Q.  E. g  e.  Q.  (
f  e.  ( 1st `  y )  /\  g  e.  ( 1st `  w
)  /\  u  =  ( f  .Q  g
) ) } ,  { u  e.  Q.  |  E. f  e.  Q.  E. g  e.  Q.  (
f  e.  ( 2nd `  y )  /\  g  e.  ( 2nd `  w
)  /\  u  =  ( f  .Q  g
) ) } >. )
105104, 55genpelvl 6668 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( w  e.  ( 1st `  ( A  .P.  B ) )  <->  E. z  e.  ( 1st `  A ) E. x  e.  ( 1st `  B ) w  =  ( z  .Q  x
) ) )
106103, 105mpdan 406 . . . . . . . 8  |-  ( A  e.  P.  ->  (
w  e.  ( 1st `  ( A  .P.  B
) )  <->  E. z  e.  ( 1st `  A
) E. x  e.  ( 1st `  B
) w  =  ( z  .Q  x ) ) )
107106ad2antrr 465 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) ) )  ->  (
w  e.  ( 1st `  ( A  .P.  B
) )  <->  E. z  e.  ( 1st `  A
) E. x  e.  ( 1st `  B
) w  =  ( z  .Q  x ) ) )
108102, 107sylibrd 162 . . . . . 6  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) ) )  ->  ( E. z  e.  ( 1st `  A ) v 
<Q  z  ->  w  e.  ( 1st `  ( A  .P.  B ) ) ) )
10912, 108mpd 13 . . . . 5  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  ( 1st `  A )  /\  ( v  .Q  ( *Q `  w
) )  e.  ( 2nd `  A ) ) )  ->  w  e.  ( 1st `  ( A  .P.  B ) ) )
1109, 109rexlimddv 2454 . . . 4  |-  ( ( A  e.  P.  /\  w  <Q  1Q )  ->  w  e.  ( 1st `  ( A  .P.  B
) ) )
111110ex 112 . . 3  |-  ( A  e.  P.  ->  (
w  <Q  1Q  ->  w  e.  ( 1st `  ( A  .P.  B ) ) ) )
1122, 111syl5bi 145 . 2  |-  ( A  e.  P.  ->  (
w  e.  ( 1st `  1P )  ->  w  e.  ( 1st `  ( A  .P.  B ) ) ) )
113112ssrdv 2979 1  |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259   E.wex 1397    e. wcel 1409   {cab 2042   E.wrex 2324    C_ wss 2945   <.cop 3406   class class class wbr 3792   ` cfv 4930  (class class class)co 5540   1stc1st 5793   2ndc2nd 5794   Q.cnq 6436   1Qc1q 6437    .Q cmq 6439   *Qcrq 6440    <Q cltq 6441   P.cnp 6447   1Pc1p 6448    .P. cmp 6450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-imp 6625
This theorem is referenced by:  recexprlemex  6793
  Copyright terms: Public domain W3C validator