ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrriota Unicode version

Theorem prsrriota 6930
Description: Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Assertion
Ref Expression
prsrriota  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
Distinct variable group:    x, A

Proof of Theorem prsrriota
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 srpospr 6925 . . 3  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
2 reurex 2540 . . 3  |-  ( E! y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A  ->  E. y  e.  P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  A )
31, 2syl 14 . 2  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E. y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
4 simprr 492 . . . . 5  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  A )
5 simprl 491 . . . . . 6  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  y  e.  P. )
6 srpospr 6925 . . . . . . 7  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
76adantr 265 . . . . . 6  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  E! x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
8 oveq1 5547 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  +P.  1P )  =  ( y  +P. 
1P ) )
98opeq1d 3583 . . . . . . . . 9  |-  ( x  =  y  ->  <. (
x  +P.  1P ) ,  1P >.  =  <. ( y  +P.  1P ) ,  1P >. )
109eceq1d 6173 . . . . . . . 8  |-  ( x  =  y  ->  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1110eqeq1d 2064 . . . . . . 7  |-  ( x  =  y  ->  ( [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A  <->  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  A ) )
1211riota2 5518 . . . . . 6  |-  ( ( y  e.  P.  /\  E! x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  ->  ( [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A  <-> 
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y ) )
135, 7, 12syl2anc 397 . . . . 5  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  ( [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A  <-> 
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y ) )
144, 13mpbid 139 . . . 4  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y )
15 oveq1 5547 . . . . . 6  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P )  =  ( y  +P.  1P ) )
1615opeq1d 3583 . . . . 5  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >.  =  <. ( y  +P.  1P ) ,  1P >. )
1716eceq1d 6173 . . . 4  |-  ( (
iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  =  y  ->  [ <. (
( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1814, 17syl 14 . . 3  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( ( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )
1918, 4eqtrd 2088 . 2  |-  ( ( ( A  e.  R.  /\  0R  <R  A )  /\  ( y  e.  P.  /\ 
[ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  =  A ) )  ->  [ <. ( ( iota_ x  e.  P.  [
<. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
203, 19rexlimddv 2454 1  |-  ( ( A  e.  R.  /\  0R  <R  A )  ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409   E.wrex 2324   E!wreu 2325   <.cop 3406   class class class wbr 3792   iota_crio 5495  (class class class)co 5540   [cec 6135   P.cnp 6447   1Pc1p 6448    +P. cpp 6449    ~R cer 6452   R.cnr 6453   0Rc0r 6454    <R cltr 6459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874
This theorem is referenced by:  caucvgsrlemfv  6933  caucvgsrlemgt1  6937
  Copyright terms: Public domain W3C validator