ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnrelemcalc Unicode version

Theorem qbtwnrelemcalc 10033
Description: Lemma for qbtwnre 10034. Calculations involved in showing the constructed rational number is less than 
B. (Contributed by Jim Kingdon, 14-Oct-2021.)
Hypotheses
Ref Expression
qbtwnrelemcalc.m  |-  ( ph  ->  M  e.  ZZ )
qbtwnrelemcalc.n  |-  ( ph  ->  N  e.  NN )
qbtwnrelemcalc.a  |-  ( ph  ->  A  e.  RR )
qbtwnrelemcalc.b  |-  ( ph  ->  B  e.  RR )
qbtwnrelemcalc.lt  |-  ( ph  ->  M  <  ( A  x.  ( 2  x.  N ) ) )
qbtwnrelemcalc.1n  |-  ( ph  ->  ( 1  /  N
)  <  ( B  -  A ) )
Assertion
Ref Expression
qbtwnrelemcalc  |-  ( ph  ->  ( ( M  + 
2 )  /  (
2  x.  N ) )  <  B )

Proof of Theorem qbtwnrelemcalc
StepHypRef Expression
1 2re 8790 . . . . 5  |-  2  e.  RR
21a1i 9 . . . 4  |-  ( ph  ->  2  e.  RR )
3 qbtwnrelemcalc.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
4 qbtwnrelemcalc.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
54nnred 8733 . . . . . . 7  |-  ( ph  ->  N  e.  RR )
62, 5remulcld 7796 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  e.  RR )
73, 6remulcld 7796 . . . . 5  |-  ( ph  ->  ( B  x.  (
2  x.  N ) )  e.  RR )
8 qbtwnrelemcalc.a . . . . . 6  |-  ( ph  ->  A  e.  RR )
98, 6remulcld 7796 . . . . 5  |-  ( ph  ->  ( A  x.  (
2  x.  N ) )  e.  RR )
107, 9resubcld 8143 . . . 4  |-  ( ph  ->  ( ( B  x.  ( 2  x.  N
) )  -  ( A  x.  ( 2  x.  N ) ) )  e.  RR )
11 qbtwnrelemcalc.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
1211zred 9173 . . . . 5  |-  ( ph  ->  M  e.  RR )
137, 12resubcld 8143 . . . 4  |-  ( ph  ->  ( ( B  x.  ( 2  x.  N
) )  -  M
)  e.  RR )
14 2t1e2 8873 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
1514oveq1i 5784 . . . . . . . 8  |-  ( ( 2  x.  1 )  /  ( 2  x.  N ) )  =  ( 2  /  (
2  x.  N ) )
16 1cnd 7782 . . . . . . . . 9  |-  ( ph  ->  1  e.  CC )
175recnd 7794 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
182recnd 7794 . . . . . . . . 9  |-  ( ph  ->  2  e.  CC )
194nnap0d 8766 . . . . . . . . 9  |-  ( ph  ->  N #  0 )
20 2ap0 8813 . . . . . . . . . 10  |-  2 #  0
2120a1i 9 . . . . . . . . 9  |-  ( ph  ->  2 #  0 )
2216, 17, 18, 19, 21divcanap5d 8577 . . . . . . . 8  |-  ( ph  ->  ( ( 2  x.  1 )  /  (
2  x.  N ) )  =  ( 1  /  N ) )
2315, 22syl5eqr 2186 . . . . . . 7  |-  ( ph  ->  ( 2  /  (
2  x.  N ) )  =  ( 1  /  N ) )
24 qbtwnrelemcalc.1n . . . . . . 7  |-  ( ph  ->  ( 1  /  N
)  <  ( B  -  A ) )
2523, 24eqbrtrd 3950 . . . . . 6  |-  ( ph  ->  ( 2  /  (
2  x.  N ) )  <  ( B  -  A ) )
263, 8resubcld 8143 . . . . . . 7  |-  ( ph  ->  ( B  -  A
)  e.  RR )
27 2rp 9446 . . . . . . . . 9  |-  2  e.  RR+
2827a1i 9 . . . . . . . 8  |-  ( ph  ->  2  e.  RR+ )
294nnrpd 9482 . . . . . . . 8  |-  ( ph  ->  N  e.  RR+ )
3028, 29rpmulcld 9500 . . . . . . 7  |-  ( ph  ->  ( 2  x.  N
)  e.  RR+ )
312, 26, 30ltdivmul2d 9536 . . . . . 6  |-  ( ph  ->  ( ( 2  / 
( 2  x.  N
) )  <  ( B  -  A )  <->  2  <  ( ( B  -  A )  x.  ( 2  x.  N
) ) ) )
3225, 31mpbid 146 . . . . 5  |-  ( ph  ->  2  <  ( ( B  -  A )  x.  ( 2  x.  N ) ) )
333recnd 7794 . . . . . 6  |-  ( ph  ->  B  e.  CC )
348recnd 7794 . . . . . 6  |-  ( ph  ->  A  e.  CC )
3518, 17mulcld 7786 . . . . . 6  |-  ( ph  ->  ( 2  x.  N
)  e.  CC )
3633, 34, 35subdird 8177 . . . . 5  |-  ( ph  ->  ( ( B  -  A )  x.  (
2  x.  N ) )  =  ( ( B  x.  ( 2  x.  N ) )  -  ( A  x.  ( 2  x.  N
) ) ) )
3732, 36breqtrd 3954 . . . 4  |-  ( ph  ->  2  <  ( ( B  x.  ( 2  x.  N ) )  -  ( A  x.  ( 2  x.  N
) ) ) )
38 qbtwnrelemcalc.lt . . . . 5  |-  ( ph  ->  M  <  ( A  x.  ( 2  x.  N ) ) )
3912, 9, 7, 38ltsub2dd 8320 . . . 4  |-  ( ph  ->  ( ( B  x.  ( 2  x.  N
) )  -  ( A  x.  ( 2  x.  N ) ) )  <  ( ( B  x.  ( 2  x.  N ) )  -  M ) )
402, 10, 13, 37, 39lttrd 7888 . . 3  |-  ( ph  ->  2  <  ( ( B  x.  ( 2  x.  N ) )  -  M ) )
4112, 2, 7ltaddsub2d 8308 . . 3  |-  ( ph  ->  ( ( M  + 
2 )  <  ( B  x.  ( 2  x.  N ) )  <->  2  <  ( ( B  x.  ( 2  x.  N ) )  -  M ) ) )
4240, 41mpbird 166 . 2  |-  ( ph  ->  ( M  +  2 )  <  ( B  x.  ( 2  x.  N ) ) )
4312, 2readdcld 7795 . . 3  |-  ( ph  ->  ( M  +  2 )  e.  RR )
4443, 3, 30ltdivmul2d 9536 . 2  |-  ( ph  ->  ( ( ( M  +  2 )  / 
( 2  x.  N
) )  <  B  <->  ( M  +  2 )  <  ( B  x.  ( 2  x.  N
) ) ) )
4542, 44mpbird 166 1  |-  ( ph  ->  ( ( M  + 
2 )  /  (
2  x.  N ) )  <  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    - cmin 7933   # cap 8343    / cdiv 8432   NNcn 8720   2c2 8771   ZZcz 9054   RR+crp 9441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-z 9055  df-rp 9442
This theorem is referenced by:  qbtwnre  10034
  Copyright terms: Public domain W3C validator