![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reaplt | Unicode version |
Description: Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.) |
Ref | Expression |
---|---|
reaplt |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | apreap 7743 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | reapval 7732 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrd 186 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-mulrcl 7126 ax-addcom 7127 ax-mulcom 7128 ax-addass 7129 ax-mulass 7130 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-1rid 7134 ax-0id 7135 ax-rnegex 7136 ax-precex 7137 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-lttrn 7141 ax-pre-apti 7142 ax-pre-ltadd 7143 ax-pre-mulgt0 7144 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-br 3788 df-opab 3842 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-iota 4891 df-fun 4928 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-pnf 7206 df-mnf 7207 df-ltxr 7209 df-sub 7337 df-neg 7338 df-reap 7731 df-ap 7738 |
This theorem is referenced by: reapltxor 7745 1ap0 7746 reapmul1lem 7750 reapmul1 7751 reapadd1 7752 reapneg 7753 reapcotr 7754 remulext1 7755 apsqgt0 7757 apsym 7762 msqge0 7772 mulge0 7775 leltap 7780 gt0ap0 7781 ltleap 7786 ltap 7787 ap0gt0 7794 recexaplem2 7798 zapne 8492 qlttri2 8796 apbtwnz 9345 sq11ap 9725 nn0opthd 9735 recvguniq 10008 sqrt11ap 10051 ltabs 10100 |
Copyright terms: Public domain | W3C validator |