![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fndm | Unicode version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 4935 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simprbi 269 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
This theorem depends on definitions: df-bi 115 df-fn 4935 |
This theorem is referenced by: funfni 5030 fndmu 5031 fnbr 5032 fnco 5038 fnresdm 5039 fnresdisj 5040 fnssresb 5042 fn0 5049 fnimadisj 5050 fnimaeq0 5051 dmmpti 5059 fdm 5081 f1dm 5127 f1odm 5161 f1o00 5192 fvelimab 5261 fvun1 5271 eqfnfv2 5298 fndmdif 5304 fneqeql2 5308 elpreima 5318 fsn2 5369 fconst3m 5412 fconst4m 5413 fnfvima 5425 funiunfvdm 5434 fnunirn 5438 dff13 5439 f1eqcocnv 5462 oprssov 5673 offval 5750 ofrfval 5751 fnexALT 5771 dmmpt2 5862 tposfo2 5916 smodm2 5944 smoel2 5952 tfrlem5 5963 tfrlem8 5967 tfrlem9 5968 tfrlemisucaccv 5974 tfrlemiubacc 5979 tfrexlem 5983 tfri2d 5985 tfr1onlemsucaccv 5990 tfr1onlemubacc 5995 tfrcllemsucaccv 6003 tfri2 6015 rdgivallem 6030 bren 6294 fndmeng 6357 dmaddpi 6577 dmmulpi 6578 sizeinf 9802 shftfn 9850 |
Copyright terms: Public domain | W3C validator |