ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caofinvl GIF version

Theorem caofinvl 5760
Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofinv.3 (𝜑𝐵𝑊)
caofinv.4 (𝜑𝑁:𝑆𝑆)
caofinv.5 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
caofinvl.6 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
Assertion
Ref Expression
caofinvl (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑣,𝐴   𝑣,𝐹,𝑥   𝑥,𝑁,𝑣   𝑣,𝑆   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑣)   𝑅(𝑣)   𝐺(𝑣)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem caofinvl
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . . . 4 (𝜑𝐴𝑉)
2 caofinv.4 . . . . . . . . 9 (𝜑𝑁:𝑆𝑆)
32adantr 265 . . . . . . . 8 ((𝜑𝑣𝐴) → 𝑁:𝑆𝑆)
4 caofref.2 . . . . . . . . 9 (𝜑𝐹:𝐴𝑆)
54ffvelrnda 5329 . . . . . . . 8 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ 𝑆)
63, 5ffvelrnd 5330 . . . . . . 7 ((𝜑𝑣𝐴) → (𝑁‘(𝐹𝑣)) ∈ 𝑆)
7 eqid 2056 . . . . . . 7 (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))
86, 7fmptd 5349 . . . . . 6 (𝜑 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆)
9 caofinv.5 . . . . . . 7 (𝜑𝐺 = (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))))
109feq1d 5061 . . . . . 6 (𝜑 → (𝐺:𝐴𝑆 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))):𝐴𝑆))
118, 10mpbird 160 . . . . 5 (𝜑𝐺:𝐴𝑆)
1211ffvelrnda 5329 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
134ffvelrnda 5329 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
146ralrimiva 2409 . . . . . . 7 (𝜑 → ∀𝑣𝐴 (𝑁‘(𝐹𝑣)) ∈ 𝑆)
157fnmpt 5052 . . . . . . 7 (∀𝑣𝐴 (𝑁‘(𝐹𝑣)) ∈ 𝑆 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴)
1614, 15syl 14 . . . . . 6 (𝜑 → (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴)
179fneq1d 5016 . . . . . 6 (𝜑 → (𝐺 Fn 𝐴 ↔ (𝑣𝐴 ↦ (𝑁‘(𝐹𝑣))) Fn 𝐴))
1816, 17mpbird 160 . . . . 5 (𝜑𝐺 Fn 𝐴)
19 dffn5im 5246 . . . . 5 (𝐺 Fn 𝐴𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
2018, 19syl 14 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
214feqmptd 5253 . . . 4 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
221, 12, 13, 20, 21offval2 5753 . . 3 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))))
239fveq1d 5207 . . . . . . . 8 (𝜑 → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
2423adantr 265 . . . . . . 7 ((𝜑𝑤𝐴) → (𝐺𝑤) = ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤))
25 simpr 107 . . . . . . . 8 ((𝜑𝑤𝐴) → 𝑤𝐴)
262adantr 265 . . . . . . . . 9 ((𝜑𝑤𝐴) → 𝑁:𝑆𝑆)
2726, 13ffvelrnd 5330 . . . . . . . 8 ((𝜑𝑤𝐴) → (𝑁‘(𝐹𝑤)) ∈ 𝑆)
28 fveq2 5205 . . . . . . . . . 10 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
2928fveq2d 5209 . . . . . . . . 9 (𝑣 = 𝑤 → (𝑁‘(𝐹𝑣)) = (𝑁‘(𝐹𝑤)))
3029, 7fvmptg 5275 . . . . . . . 8 ((𝑤𝐴 ∧ (𝑁‘(𝐹𝑤)) ∈ 𝑆) → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
3125, 27, 30syl2anc 397 . . . . . . 7 ((𝜑𝑤𝐴) → ((𝑣𝐴 ↦ (𝑁‘(𝐹𝑣)))‘𝑤) = (𝑁‘(𝐹𝑤)))
3224, 31eqtrd 2088 . . . . . 6 ((𝜑𝑤𝐴) → (𝐺𝑤) = (𝑁‘(𝐹𝑤)))
3332oveq1d 5554 . . . . 5 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
34 caofinvl.6 . . . . . . . 8 ((𝜑𝑥𝑆) → ((𝑁𝑥)𝑅𝑥) = 𝐵)
3534ralrimiva 2409 . . . . . . 7 (𝜑 → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
3635adantr 265 . . . . . 6 ((𝜑𝑤𝐴) → ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵)
37 fveq2 5205 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → (𝑁𝑥) = (𝑁‘(𝐹𝑤)))
38 id 19 . . . . . . . . 9 (𝑥 = (𝐹𝑤) → 𝑥 = (𝐹𝑤))
3937, 38oveq12d 5557 . . . . . . . 8 (𝑥 = (𝐹𝑤) → ((𝑁𝑥)𝑅𝑥) = ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)))
4039eqeq1d 2064 . . . . . . 7 (𝑥 = (𝐹𝑤) → (((𝑁𝑥)𝑅𝑥) = 𝐵 ↔ ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵))
4140rspcva 2671 . . . . . 6 (((𝐹𝑤) ∈ 𝑆 ∧ ∀𝑥𝑆 ((𝑁𝑥)𝑅𝑥) = 𝐵) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
4213, 36, 41syl2anc 397 . . . . 5 ((𝜑𝑤𝐴) → ((𝑁‘(𝐹𝑤))𝑅(𝐹𝑤)) = 𝐵)
4333, 42eqtrd 2088 . . . 4 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐹𝑤)) = 𝐵)
4443mpteq2dva 3874 . . 3 (𝜑 → (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐹𝑤))) = (𝑤𝐴𝐵))
4522, 44eqtrd 2088 . 2 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝑤𝐴𝐵))
46 fconstmpt 4414 . 2 (𝐴 × {𝐵}) = (𝑤𝐴𝐵)
4745, 46syl6eqr 2106 1 (𝜑 → (𝐺𝑓 𝑅𝐹) = (𝐴 × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wral 2323  {csn 3402  cmpt 3845   × cxp 4370   Fn wfn 4924  wf 4925  cfv 4929  (class class class)co 5539  𝑓 cof 5737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-setind 4289
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-of 5739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator