Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnref1o GIF version

Theorem cnref1o 8679
 Description: There is a natural one-to-one mapping from (ℝ × ℝ) to ℂ, where we map ⟨𝑥, 𝑦⟩ to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of ℂ (see df-c 6952), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnref1o 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnref1o
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 106 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
21recnd 7112 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
3 ax-icn 7036 . . . . . . . . 9 i ∈ ℂ
43a1i 9 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
5 simpr 107 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
65recnd 7112 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
74, 6mulcld 7104 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
82, 7addcld 7103 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
98rgen2a 2392 . . . . 5 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ
10 cnref1o.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
1110fnmpt2 5855 . . . . 5 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ → 𝐹 Fn (ℝ × ℝ))
129, 11ax-mp 7 . . . 4 𝐹 Fn (ℝ × ℝ)
13 1st2nd2 5828 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1413fveq2d 5209 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
15 df-ov 5542 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
1614, 15syl6eqr 2106 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
17 xp1st 5819 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
18 xp2nd 5820 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
1917recnd 7112 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℂ)
203a1i 9 . . . . . . . . . 10 (𝑧 ∈ (ℝ × ℝ) → i ∈ ℂ)
2118recnd 7112 . . . . . . . . . 10 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℂ)
2220, 21mulcld 7104 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → (i · (2nd𝑧)) ∈ ℂ)
2319, 22addcld 7103 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) + (i · (2nd𝑧))) ∈ ℂ)
24 oveq1 5546 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝑥 + (i · 𝑦)) = ((1st𝑧) + (i · 𝑦)))
25 oveq2 5547 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (i · 𝑦) = (i · (2nd𝑧)))
2625oveq2d 5555 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ((1st𝑧) + (i · 𝑦)) = ((1st𝑧) + (i · (2nd𝑧))))
2724, 26, 10ovmpt2g 5662 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ ∧ ((1st𝑧) + (i · (2nd𝑧))) ∈ ℂ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
2817, 18, 23, 27syl3anc 1146 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
2916, 28eqtrd 2088 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))))
3029, 23eqeltrd 2130 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ ℂ)
3130rgen 2391 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ
32 ffnfv 5350 . . . 4 (𝐹:(ℝ × ℝ)⟶ℂ ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ))
3312, 31, 32mpbir2an 860 . . 3 𝐹:(ℝ × ℝ)⟶ℂ
3417, 18jca 294 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ))
35 xp1st 5819 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
36 xp2nd 5820 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
3735, 36jca 294 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ))
38 cru 7666 . . . . . . 7 ((((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) ∧ ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
3934, 37, 38syl2an 277 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
40 fveq2 5205 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
41 fveq2 5205 . . . . . . . . . 10 (𝑧 = 𝑤 → (1st𝑧) = (1st𝑤))
42 fveq2 5205 . . . . . . . . . . 11 (𝑧 = 𝑤 → (2nd𝑧) = (2nd𝑤))
4342oveq2d 5555 . . . . . . . . . 10 (𝑧 = 𝑤 → (i · (2nd𝑧)) = (i · (2nd𝑤)))
4441, 43oveq12d 5557 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))))
4540, 44eqeq12d 2070 . . . . . . . 8 (𝑧 = 𝑤 → ((𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))) ↔ (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤)))))
4645, 29vtoclga 2636 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤))))
4729, 46eqeqan12d 2071 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤)))))
48 1st2nd2 5828 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
4913, 48eqeqan12d 2071 . . . . . . 7 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
50 vex 2577 . . . . . . . . 9 𝑧 ∈ V
51 1stexg 5821 . . . . . . . . 9 (𝑧 ∈ V → (1st𝑧) ∈ V)
5250, 51ax-mp 7 . . . . . . . 8 (1st𝑧) ∈ V
53 2ndexg 5822 . . . . . . . . 9 (𝑧 ∈ V → (2nd𝑧) ∈ V)
5450, 53ax-mp 7 . . . . . . . 8 (2nd𝑧) ∈ V
5552, 54opth 4001 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
5649, 55syl6bb 189 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
5739, 47, 563bitr4d 213 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
5857biimpd 136 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
5958rgen2a 2392 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
60 dff13 5434 . . 3 (𝐹:(ℝ × ℝ)–1-1→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
6133, 59, 60mpbir2an 860 . 2 𝐹:(ℝ × ℝ)–1-1→ℂ
62 cnre 7080 . . . . . 6 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
63 simpl 106 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑢 ∈ ℝ)
64 simpr 107 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ∈ ℝ)
6563recnd 7112 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑢 ∈ ℂ)
663a1i 9 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → i ∈ ℂ)
6764recnd 7112 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ∈ ℂ)
6866, 67mulcld 7104 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (i · 𝑣) ∈ ℂ)
6965, 68addcld 7103 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + (i · 𝑣)) ∈ ℂ)
70 oveq1 5546 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥 + (i · 𝑦)) = (𝑢 + (i · 𝑦)))
71 oveq2 5547 . . . . . . . . . . 11 (𝑦 = 𝑣 → (i · 𝑦) = (i · 𝑣))
7271oveq2d 5555 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑢 + (i · 𝑦)) = (𝑢 + (i · 𝑣)))
7370, 72, 10ovmpt2g 5662 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ (𝑢 + (i · 𝑣)) ∈ ℂ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣)))
7463, 64, 69, 73syl3anc 1146 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣)))
7574eqeq2d 2067 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = (𝑢 + (i · 𝑣))))
76752rexbiia 2357 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
7762, 76sylibr 141 . . . . 5 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
78 fveq2 5205 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
79 df-ov 5542 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
8078, 79syl6eqr 2106 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
8180eqeq2d 2067 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
8281rexxp 4507 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
8377, 82sylibr 141 . . . 4 (𝑤 ∈ ℂ → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
8483rgen 2391 . . 3 𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
85 dffo3 5341 . . 3 (𝐹:(ℝ × ℝ)–onto→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
8633, 84, 85mpbir2an 860 . 2 𝐹:(ℝ × ℝ)–onto→ℂ
87 df-f1o 4936 . 2 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ ↔ (𝐹:(ℝ × ℝ)–1-1→ℂ ∧ 𝐹:(ℝ × ℝ)–onto→ℂ))
8861, 86, 87mpbir2an 860 1 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   ↔ wb 102   = wceq 1259   ∈ wcel 1409  ∀wral 2323  ∃wrex 2324  Vcvv 2574  ⟨cop 3405   × cxp 4370   Fn wfn 4924  ⟶wf 4925  –1-1→wf1 4926  –onto→wfo 4927  –1-1-onto→wf1o 4928  ‘cfv 4929  (class class class)co 5539   ↦ cmpt2 5541  1st c1st 5792  2nd c2nd 5793  ℂcc 6944  ℝcr 6945  ici 6948   + caddc 6949   · cmul 6951 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-ltxr 7123  df-sub 7246  df-neg 7247  df-reap 7639 This theorem is referenced by:  cnrecnv  9737
 Copyright terms: Public domain W3C validator