ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnref1o GIF version

Theorem cnref1o 9440
Description: There is a natural one-to-one mapping from (ℝ × ℝ) to , where we map 𝑥, 𝑦 to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of (see df-c 7626), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnref1o 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnref1o
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℝ)
21recnd 7794 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑥 ∈ ℂ)
3 ax-icn 7715 . . . . . . . . 9 i ∈ ℂ
43a1i 9 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → i ∈ ℂ)
5 simpr 109 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
65recnd 7794 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
74, 6mulcld 7786 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (i · 𝑦) ∈ ℂ)
82, 7addcld 7785 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + (i · 𝑦)) ∈ ℂ)
98rgen2a 2486 . . . . 5 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ
10 cnref1o.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
1110fnmpo 6100 . . . . 5 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + (i · 𝑦)) ∈ ℂ → 𝐹 Fn (ℝ × ℝ))
129, 11ax-mp 5 . . . 4 𝐹 Fn (ℝ × ℝ)
13 1st2nd2 6073 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
1413fveq2d 5425 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
15 df-ov 5777 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
1614, 15syl6eqr 2190 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
17 xp1st 6063 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
18 xp2nd 6064 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
1917recnd 7794 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℂ)
203a1i 9 . . . . . . . . . 10 (𝑧 ∈ (ℝ × ℝ) → i ∈ ℂ)
2118recnd 7794 . . . . . . . . . 10 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℂ)
2220, 21mulcld 7786 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → (i · (2nd𝑧)) ∈ ℂ)
2319, 22addcld 7785 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) + (i · (2nd𝑧))) ∈ ℂ)
24 oveq1 5781 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝑥 + (i · 𝑦)) = ((1st𝑧) + (i · 𝑦)))
25 oveq2 5782 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (i · 𝑦) = (i · (2nd𝑧)))
2625oveq2d 5790 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ((1st𝑧) + (i · 𝑦)) = ((1st𝑧) + (i · (2nd𝑧))))
2724, 26, 10ovmpog 5905 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ ∧ ((1st𝑧) + (i · (2nd𝑧))) ∈ ℂ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
2817, 18, 23, 27syl3anc 1216 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
2916, 28eqtrd 2172 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))))
3029, 23eqeltrd 2216 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ ℂ)
3130rgen 2485 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ
32 ffnfv 5578 . . . 4 (𝐹:(ℝ × ℝ)⟶ℂ ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ))
3312, 31, 32mpbir2an 926 . . 3 𝐹:(ℝ × ℝ)⟶ℂ
3417, 18jca 304 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ))
35 xp1st 6063 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
36 xp2nd 6064 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
3735, 36jca 304 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ))
38 cru 8364 . . . . . . 7 ((((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) ∧ ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
3934, 37, 38syl2an 287 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
40 fveq2 5421 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
41 fveq2 5421 . . . . . . . . . 10 (𝑧 = 𝑤 → (1st𝑧) = (1st𝑤))
42 fveq2 5421 . . . . . . . . . . 11 (𝑧 = 𝑤 → (2nd𝑧) = (2nd𝑤))
4342oveq2d 5790 . . . . . . . . . 10 (𝑧 = 𝑤 → (i · (2nd𝑧)) = (i · (2nd𝑤)))
4441, 43oveq12d 5792 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))))
4540, 44eqeq12d 2154 . . . . . . . 8 (𝑧 = 𝑤 → ((𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))) ↔ (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤)))))
4645, 29vtoclga 2752 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤))))
4729, 46eqeqan12d 2155 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤)))))
48 1st2nd2 6073 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
4913, 48eqeqan12d 2155 . . . . . . 7 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
50 vex 2689 . . . . . . . . 9 𝑧 ∈ V
51 1stexg 6065 . . . . . . . . 9 (𝑧 ∈ V → (1st𝑧) ∈ V)
5250, 51ax-mp 5 . . . . . . . 8 (1st𝑧) ∈ V
53 2ndexg 6066 . . . . . . . . 9 (𝑧 ∈ V → (2nd𝑧) ∈ V)
5450, 53ax-mp 5 . . . . . . . 8 (2nd𝑧) ∈ V
5552, 54opth 4159 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
5649, 55syl6bb 195 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
5739, 47, 563bitr4d 219 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
5857biimpd 143 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
5958rgen2a 2486 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
60 dff13 5669 . . 3 (𝐹:(ℝ × ℝ)–1-1→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
6133, 59, 60mpbir2an 926 . 2 𝐹:(ℝ × ℝ)–1-1→ℂ
62 cnre 7762 . . . . . 6 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
63 simpl 108 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑢 ∈ ℝ)
64 simpr 109 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ∈ ℝ)
6563recnd 7794 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑢 ∈ ℂ)
663a1i 9 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → i ∈ ℂ)
6764recnd 7794 . . . . . . . . . . 11 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → 𝑣 ∈ ℂ)
6866, 67mulcld 7786 . . . . . . . . . 10 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (i · 𝑣) ∈ ℂ)
6965, 68addcld 7785 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢 + (i · 𝑣)) ∈ ℂ)
70 oveq1 5781 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥 + (i · 𝑦)) = (𝑢 + (i · 𝑦)))
71 oveq2 5782 . . . . . . . . . . 11 (𝑦 = 𝑣 → (i · 𝑦) = (i · 𝑣))
7271oveq2d 5790 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝑢 + (i · 𝑦)) = (𝑢 + (i · 𝑣)))
7370, 72, 10ovmpog 5905 . . . . . . . . 9 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ (𝑢 + (i · 𝑣)) ∈ ℂ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣)))
7463, 64, 69, 73syl3anc 1216 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣)))
7574eqeq2d 2151 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = (𝑢 + (i · 𝑣))))
76752rexbiia 2451 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
7762, 76sylibr 133 . . . . 5 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
78 fveq2 5421 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
79 df-ov 5777 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
8078, 79syl6eqr 2190 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
8180eqeq2d 2151 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
8281rexxp 4683 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
8377, 82sylibr 133 . . . 4 (𝑤 ∈ ℂ → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
8483rgen 2485 . . 3 𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
85 dffo3 5567 . . 3 (𝐹:(ℝ × ℝ)–onto→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
8633, 84, 85mpbir2an 926 . 2 𝐹:(ℝ × ℝ)–onto→ℂ
87 df-f1o 5130 . 2 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ ↔ (𝐹:(ℝ × ℝ)–1-1→ℂ ∧ 𝐹:(ℝ × ℝ)–onto→ℂ))
8861, 86, 87mpbir2an 926 1 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  Vcvv 2686  cop 3530   × cxp 4537   Fn wfn 5118  wf 5119  1-1wf1 5120  ontowfo 5121  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  cmpo 5776  1st c1st 6036  2nd c2nd 6037  cc 7618  cr 7619  ici 7622   + caddc 7623   · cmul 7625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-reap 8337
This theorem is referenced by:  cnrecnv  10682
  Copyright terms: Public domain W3C validator