ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemf GIF version

Theorem cvg1nlemf 9809
Description: Lemma for cvg1n 9812. The modified sequence 𝐺 is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f (𝜑𝐹:ℕ⟶ℝ)
cvg1n.c (𝜑𝐶 ∈ ℝ+)
cvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
cvg1nlem.g 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))
cvg1nlem.z (𝜑𝑍 ∈ ℕ)
cvg1nlem.start (𝜑𝐶 < 𝑍)
Assertion
Ref Expression
cvg1nlemf (𝜑𝐺:ℕ⟶ℝ)
Distinct variable group:   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝐶(𝑗,𝑘,𝑛)   𝐹(𝑗,𝑘,𝑛)   𝐺(𝑗,𝑘,𝑛)   𝑍(𝑗,𝑘,𝑛)

Proof of Theorem cvg1nlemf
StepHypRef Expression
1 cvg1n.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
21adantr 265 . . 3 ((𝜑𝑗 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
3 simpr 107 . . . 4 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
4 cvg1nlem.z . . . . 5 (𝜑𝑍 ∈ ℕ)
54adantr 265 . . . 4 ((𝜑𝑗 ∈ ℕ) → 𝑍 ∈ ℕ)
63, 5nnmulcld 8037 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝑗 · 𝑍) ∈ ℕ)
72, 6ffvelrnd 5330 . 2 ((𝜑𝑗 ∈ ℕ) → (𝐹‘(𝑗 · 𝑍)) ∈ ℝ)
8 cvg1nlem.g . 2 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))
97, 8fmptd 5349 1 (𝜑𝐺:ℕ⟶ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wral 2323   class class class wbr 3791  cmpt 3845  wf 4925  cfv 4929  (class class class)co 5539  cr 6945   + caddc 6949   · cmul 6951   < clt 7118   / cdiv 7724  cn 7989  cuz 8568  +crp 8680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-1rid 7048  ax-cnre 7052
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-fv 4937  df-ov 5542  df-inn 7990
This theorem is referenced by:  cvg1nlemres  9811
  Copyright terms: Public domain W3C validator