ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemres GIF version

Theorem cvg1nlemres 9811
Description: Lemma for cvg1n 9812. The original sequence 𝐹 has a limit (turns out it is the same as the limit of the modified sequence 𝐺). (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f (𝜑𝐹:ℕ⟶ℝ)
cvg1n.c (𝜑𝐶 ∈ ℝ+)
cvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
cvg1nlem.g 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))
cvg1nlem.z (𝜑𝑍 ∈ ℕ)
cvg1nlem.start (𝜑𝐶 < 𝑍)
Assertion
Ref Expression
cvg1nlemres (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝐶,𝑖,𝑘   𝐶,𝑛,𝑘   𝑗,𝐹,𝑘,𝑛   𝑖,𝐺,𝑦,𝑘   𝑛,𝐺   𝑥,𝐺,𝑖,𝑦   𝑖,𝑍,𝑗,𝑘   𝑛,𝑍   𝜑,𝑖,𝑥,𝑦,𝑗   𝜑,𝑘,𝑛   𝑥,𝑗,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖)   𝐺(𝑗)   𝑍(𝑥,𝑦)

Proof of Theorem cvg1nlemres
Dummy variables 𝑒 𝑎 𝑏 𝑐 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvg1n.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
2 cvg1n.c . . . 4 (𝜑𝐶 ∈ ℝ+)
3 cvg1n.cau . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
4 cvg1nlem.g . . . 4 𝐺 = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑍)))
5 cvg1nlem.z . . . 4 (𝜑𝑍 ∈ ℕ)
6 cvg1nlem.start . . . 4 (𝜑𝐶 < 𝑍)
71, 2, 3, 4, 5, 6cvg1nlemf 9809 . . 3 (𝜑𝐺:ℕ⟶ℝ)
81, 2, 3, 4, 5, 6cvg1nlemcau 9810 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐺𝑛) < ((𝐺𝑘) + (1 / 𝑛)) ∧ (𝐺𝑘) < ((𝐺𝑛) + (1 / 𝑛))))
97, 8caucvgre 9807 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)))
10 fveq2 5205 . . . . . . . . . . 11 (𝑎 = 𝑤 → (ℤ𝑎) = (ℤ𝑤))
1110raleqdv 2528 . . . . . . . . . 10 (𝑎 = 𝑤 → (∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))))
1211cbvrexv 2551 . . . . . . . . 9 (∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ∃𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)))
1312ralbii 2347 . . . . . . . 8 (∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)))
1413anbi2i 438 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ↔ ((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))))
1514anbi1i 439 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ↔ (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+))
16 simpr 107 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
1716rphalfcld 8732 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
18 simplr 490 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)))
19 oveq2 5547 . . . . . . . . . . . . 13 (𝑐 = (𝑥 / 2) → (𝑦 + 𝑐) = (𝑦 + (𝑥 / 2)))
2019breq2d 3803 . . . . . . . . . . . 12 (𝑐 = (𝑥 / 2) → ((𝐺𝑏) < (𝑦 + 𝑐) ↔ (𝐺𝑏) < (𝑦 + (𝑥 / 2))))
21 oveq2 5547 . . . . . . . . . . . . 13 (𝑐 = (𝑥 / 2) → ((𝐺𝑏) + 𝑐) = ((𝐺𝑏) + (𝑥 / 2)))
2221breq2d 3803 . . . . . . . . . . . 12 (𝑐 = (𝑥 / 2) → (𝑦 < ((𝐺𝑏) + 𝑐) ↔ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
2320, 22anbi12d 450 . . . . . . . . . . 11 (𝑐 = (𝑥 / 2) → (((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2)))))
2423rexralbidv 2367 . . . . . . . . . 10 (𝑐 = (𝑥 / 2) → (∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) ↔ ∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2)))))
2524rspcv 2669 . . . . . . . . 9 ((𝑥 / 2) ∈ ℝ+ → (∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) → ∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2)))))
2617, 18, 25sylc 60 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
2715, 26sylbir 129 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∃𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
282rpred 8719 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
2928ad4antr 471 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝐶 ∈ ℝ)
30 2re 8059 . . . . . . . . . . . . . 14 2 ∈ ℝ
3130a1i 9 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 2 ∈ ℝ)
3229, 31remulcld 7114 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → (𝐶 · 2) ∈ ℝ)
33 simplr 490 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝑥 ∈ ℝ+)
3432, 33rerpdivcld 8751 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ((𝐶 · 2) / 𝑥) ∈ ℝ)
355ad4antr 471 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝑍 ∈ ℕ)
3634, 35nndivred 8038 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → (((𝐶 · 2) / 𝑥) / 𝑍) ∈ ℝ)
37 simprl 491 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝑎 ∈ ℕ)
3837nnred 8002 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → 𝑎 ∈ ℝ)
3936, 38readdcld 7113 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) ∈ ℝ)
40 arch 8235 . . . . . . . . 9 (((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) ∈ ℝ → ∃𝑒 ∈ ℕ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)
4139, 40syl 14 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ∃𝑒 ∈ ℕ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)
42 simprl 491 . . . . . . . . . 10 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → 𝑒 ∈ ℕ)
4335adantr 265 . . . . . . . . . 10 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → 𝑍 ∈ ℕ)
4442, 43nnmulcld 8037 . . . . . . . . 9 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → (𝑒 · 𝑍) ∈ ℕ)
451ad6antr 475 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝐹:ℕ⟶ℝ)
46 simplrl 495 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑒 ∈ ℕ)
475ad6antr 475 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑍 ∈ ℕ)
4846, 47nnmulcld 8037 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑒 · 𝑍) ∈ ℕ)
49 eluznn 8633 . . . . . . . . . . . . . . . 16 (((𝑒 · 𝑍) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑖 ∈ ℕ)
5048, 49sylancom 405 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑖 ∈ ℕ)
5145, 50ffvelrnd 5330 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) ∈ ℝ)
5245, 48ffvelrnd 5330 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹‘(𝑒 · 𝑍)) ∈ ℝ)
5333ad2antrr 465 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℝ+)
5453rpred 8719 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℝ)
5554rehalfcld 8227 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑥 / 2) ∈ ℝ)
5652, 55readdcld 7113 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)) ∈ ℝ)
57 simpllr 494 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → 𝑦 ∈ ℝ)
5857ad3antrrr 469 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 ∈ ℝ)
5958, 55readdcld 7113 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑦 + (𝑥 / 2)) ∈ ℝ)
6059, 55readdcld 7113 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝑦 + (𝑥 / 2)) + (𝑥 / 2)) ∈ ℝ)
6128ad6antr 475 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝐶 ∈ ℝ)
6261, 48nndivred 8038 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐶 / (𝑒 · 𝑍)) ∈ ℝ)
6352, 62readdcld 7113 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))) ∈ ℝ)
64 simpr 107 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑖 ∈ (ℤ‘(𝑒 · 𝑍)))
653ad6antr 475 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
66 fveq2 5205 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑒 · 𝑍) → (ℤ𝑛) = (ℤ‘(𝑒 · 𝑍)))
67 fveq2 5205 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = (𝑒 · 𝑍) → (𝐹𝑛) = (𝐹‘(𝑒 · 𝑍)))
68 oveq2 5547 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = (𝑒 · 𝑍) → (𝐶 / 𝑛) = (𝐶 / (𝑒 · 𝑍)))
6968oveq2d 5555 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = (𝑒 · 𝑍) → ((𝐹𝑘) + (𝐶 / 𝑛)) = ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))))
7067, 69breq12d 3804 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑒 · 𝑍) → ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ↔ (𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍)))))
7167, 68oveq12d 5557 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = (𝑒 · 𝑍) → ((𝐹𝑛) + (𝐶 / 𝑛)) = ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))
7271breq2d 3803 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = (𝑒 · 𝑍) → ((𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)) ↔ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))))
7370, 72anbi12d 450 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = (𝑒 · 𝑍) → (((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))))
7466, 73raleqbidv 2534 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (𝑒 · 𝑍) → (∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ∀𝑘 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))))
7574rspcv 2669 . . . . . . . . . . . . . . . . . 18 ((𝑒 · 𝑍) ∈ ℕ → (∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) → ∀𝑘 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))))
7648, 65, 75sylc 60 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ∀𝑘 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))))
77 fveq2 5205 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
7877oveq1d 5554 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) = ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))))
7978breq2d 3803 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ↔ (𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍)))))
8077breq1d 3801 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))) ↔ (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))))
8179, 80anbi12d 450 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))) ↔ ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))))
8281rspcv 2669 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (ℤ‘(𝑒 · 𝑍)) → (∀𝑘 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑘) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑘) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))) → ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))))
8364, 76, 82sylc 60 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ∧ (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍)))))
8483simprd 111 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))))
85 simpr 107 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
8685ad3antrrr 469 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℝ+)
8786rpred 8719 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℝ)
8887rehalfcld 8227 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑥 / 2) ∈ ℝ)
892ad6antr 475 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝐶 ∈ ℝ+)
9037ad2antrr 465 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 ∈ ℕ)
91 simplrr 496 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)
9289, 86, 47, 46, 90, 91cvg1nlemcxze 9808 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐶 / (𝑒 · 𝑍)) < (𝑥 / 2))
9362, 88, 92ltled 7193 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐶 / (𝑒 · 𝑍)) ≤ (𝑥 / 2))
9462, 55, 52, 93leadd2dd 7624 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝐶 / (𝑒 · 𝑍))) ≤ ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))
9551, 63, 56, 84, 94ltletrd 7491 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))
9690nnred 8002 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 ∈ ℝ)
9746nnred 8002 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑒 ∈ ℝ)
98 2rp 8685 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
9998a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 2 ∈ ℝ+)
10089, 99rpmulcld 8736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐶 · 2) ∈ ℝ+)
101100, 86rpdivcld 8737 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐶 · 2) / 𝑥) ∈ ℝ+)
10247nnrpd 8718 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑍 ∈ ℝ+)
103101, 102rpdivcld 8737 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐶 · 2) / 𝑥) / 𝑍) ∈ ℝ+)
104103rpred 8719 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐶 · 2) / 𝑥) / 𝑍) ∈ ℝ)
105104, 96readdcld 7113 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) ∈ ℝ)
10696, 103ltaddrp2d 8754 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 < ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎))
10796, 105, 97, 106, 91lttrd 7200 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 < 𝑒)
10896, 97, 107ltled 7193 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎𝑒)
10990nnzd 8417 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑎 ∈ ℤ)
11046nnzd 8417 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑒 ∈ ℤ)
111 eluz 8581 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℤ ∧ 𝑒 ∈ ℤ) → (𝑒 ∈ (ℤ𝑎) ↔ 𝑎𝑒))
112109, 110, 111syl2anc 397 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑒 ∈ (ℤ𝑎) ↔ 𝑎𝑒))
113108, 112mpbird 160 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑒 ∈ (ℤ𝑎))
114 simprr 492 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
115114ad2antrr 465 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))
116 fveq2 5205 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑒 → (𝐺𝑏) = (𝐺𝑒))
117116breq1d 3801 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑒 → ((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ↔ (𝐺𝑒) < (𝑦 + (𝑥 / 2))))
118116oveq1d 5554 . . . . . . . . . . . . . . . . . . . . 21 (𝑏 = 𝑒 → ((𝐺𝑏) + (𝑥 / 2)) = ((𝐺𝑒) + (𝑥 / 2)))
119118breq2d 3803 . . . . . . . . . . . . . . . . . . . 20 (𝑏 = 𝑒 → (𝑦 < ((𝐺𝑏) + (𝑥 / 2)) ↔ 𝑦 < ((𝐺𝑒) + (𝑥 / 2))))
120117, 119anbi12d 450 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑒 → (((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))) ↔ ((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑒) + (𝑥 / 2)))))
121120rspcv 2669 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (ℤ𝑎) → (∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))) → ((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑒) + (𝑥 / 2)))))
122113, 115, 121sylc 60 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑒) + (𝑥 / 2))))
123 oveq1 5546 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 = 𝑒 → (𝑗 · 𝑍) = (𝑒 · 𝑍))
124123fveq2d 5209 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑒 → (𝐹‘(𝑗 · 𝑍)) = (𝐹‘(𝑒 · 𝑍)))
125124, 4fvmptg 5275 . . . . . . . . . . . . . . . . . . . 20 ((𝑒 ∈ ℕ ∧ (𝐹‘(𝑒 · 𝑍)) ∈ ℝ) → (𝐺𝑒) = (𝐹‘(𝑒 · 𝑍)))
12646, 52, 125syl2anc 397 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐺𝑒) = (𝐹‘(𝑒 · 𝑍)))
127126breq1d 3801 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ↔ (𝐹‘(𝑒 · 𝑍)) < (𝑦 + (𝑥 / 2))))
128126oveq1d 5554 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐺𝑒) + (𝑥 / 2)) = ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))
129128breq2d 3803 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑦 < ((𝐺𝑒) + (𝑥 / 2)) ↔ 𝑦 < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2))))
130127, 129anbi12d 450 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐺𝑒) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑒) + (𝑥 / 2))) ↔ ((𝐹‘(𝑒 · 𝑍)) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))))
131122, 130mpbid 139 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2))))
132131simpld 109 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹‘(𝑒 · 𝑍)) < (𝑦 + (𝑥 / 2)))
13352, 59, 55, 132ltadd1dd 7620 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)) < ((𝑦 + (𝑥 / 2)) + (𝑥 / 2)))
13451, 56, 60, 95, 133lttrd 7200 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < ((𝑦 + (𝑥 / 2)) + (𝑥 / 2)))
13558recnd 7112 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 ∈ ℂ)
13655recnd 7112 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑥 / 2) ∈ ℂ)
137135, 136, 136addassd 7106 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝑦 + (𝑥 / 2)) + (𝑥 / 2)) = (𝑦 + ((𝑥 / 2) + (𝑥 / 2))))
138134, 137breqtrd 3815 . . . . . . . . . . . 12 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < (𝑦 + ((𝑥 / 2) + (𝑥 / 2))))
13953rpcnd 8721 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑥 ∈ ℂ)
1401392halvesd 8226 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝑥 / 2) + (𝑥 / 2)) = 𝑥)
141140oveq2d 5555 . . . . . . . . . . . 12 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝑦 + ((𝑥 / 2) + (𝑥 / 2))) = (𝑦 + 𝑥))
142138, 141breqtrd 3815 . . . . . . . . . . 11 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) < (𝑦 + 𝑥))
14351, 55readdcld 7113 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) + (𝑥 / 2)) ∈ ℝ)
144143, 55readdcld 7113 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐹𝑖) + (𝑥 / 2)) + (𝑥 / 2)) ∈ ℝ)
145131simprd 111 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 < ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)))
14651, 62readdcld 7113 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ∈ ℝ)
14783simpld 109 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))))
14862, 55, 51, 93leadd2dd 7624 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) + (𝐶 / (𝑒 · 𝑍))) ≤ ((𝐹𝑖) + (𝑥 / 2)))
14952, 146, 143, 147, 148ltletrd 7491 . . . . . . . . . . . . . . 15 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹‘(𝑒 · 𝑍)) < ((𝐹𝑖) + (𝑥 / 2)))
15052, 143, 55, 149ltadd1dd 7620 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹‘(𝑒 · 𝑍)) + (𝑥 / 2)) < (((𝐹𝑖) + (𝑥 / 2)) + (𝑥 / 2)))
15158, 56, 144, 145, 150lttrd 7200 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 < (((𝐹𝑖) + (𝑥 / 2)) + (𝑥 / 2)))
15251recnd 7112 . . . . . . . . . . . . . 14 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (𝐹𝑖) ∈ ℂ)
153152, 136, 136addassd 7106 . . . . . . . . . . . . 13 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → (((𝐹𝑖) + (𝑥 / 2)) + (𝑥 / 2)) = ((𝐹𝑖) + ((𝑥 / 2) + (𝑥 / 2))))
154151, 153breqtrd 3815 . . . . . . . . . . . 12 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 < ((𝐹𝑖) + ((𝑥 / 2) + (𝑥 / 2))))
155140oveq2d 5555 . . . . . . . . . . . 12 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) + ((𝑥 / 2) + (𝑥 / 2))) = ((𝐹𝑖) + 𝑥))
156154, 155breqtrd 3815 . . . . . . . . . . 11 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → 𝑦 < ((𝐹𝑖) + 𝑥))
157142, 156jca 294 . . . . . . . . . 10 (((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) ∧ 𝑖 ∈ (ℤ‘(𝑒 · 𝑍))) → ((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
158157ralrimiva 2409 . . . . . . . . 9 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → ∀𝑖 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
159 fveq2 5205 . . . . . . . . . . 11 (𝑗 = (𝑒 · 𝑍) → (ℤ𝑗) = (ℤ‘(𝑒 · 𝑍)))
160159raleqdv 2528 . . . . . . . . . 10 (𝑗 = (𝑒 · 𝑍) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) ↔ ∀𝑖 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
161160rspcev 2673 . . . . . . . . 9 (((𝑒 · 𝑍) ∈ ℕ ∧ ∀𝑖 ∈ (ℤ‘(𝑒 · 𝑍))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
16244, 158, 161syl2anc 397 . . . . . . . 8 ((((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) ∧ (𝑒 ∈ ℕ ∧ ((((𝐶 · 2) / 𝑥) / 𝑍) + 𝑎) < 𝑒)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
16341, 162rexlimddv 2454 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) ∧ (𝑎 ∈ ℕ ∧ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + (𝑥 / 2)) ∧ 𝑦 < ((𝐺𝑏) + (𝑥 / 2))))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
16427, 163rexlimddv 2454 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑤 ∈ ℕ ∀𝑏 ∈ (ℤ𝑤)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
16515, 164sylbi 118 . . . . 5 ((((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
166165ralrimiva 2409 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐))) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
167166ex 112 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
168167reximdva 2438 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑐 ∈ ℝ+𝑎 ∈ ℕ ∀𝑏 ∈ (ℤ𝑎)((𝐺𝑏) < (𝑦 + 𝑐) ∧ 𝑦 < ((𝐺𝑏) + 𝑐)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
1699, 168mpd 13 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  wral 2323  wrex 2324   class class class wbr 3791  cmpt 3845  wf 4925  cfv 4929  (class class class)co 5539  cr 6945   + caddc 6949   · cmul 6951   < clt 7118  cle 7119   / cdiv 7724  cn 7989  2c2 8039  cz 8301  cuz 8568  +crp 8680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-ltwlin 7054  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058  ax-pre-mulext 7059  ax-arch 7060  ax-caucvg 7061
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-xr 7122  df-ltxr 7123  df-le 7124  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646  df-div 7725  df-inn 7990  df-2 8048  df-n0 8239  df-z 8302  df-uz 8569  df-rp 8681
This theorem is referenced by:  cvg1n  9812
  Copyright terms: Public domain W3C validator