ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemj0 GIF version

Theorem ennnfonelemj0 11914
Description: Lemma for ennnfone 11938. Initial state for 𝐽. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemj0 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Distinct variable groups:   𝐴,𝑔   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐴(𝑥,𝑦,𝑗,𝑘,𝑛)   𝐹(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑔,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑔,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemj0
StepHypRef Expression
1 0nn0 8992 . . . 4 0 ∈ ℕ0
2 eqid 2139 . . . . . 6 0 = 0
32iftruei 3480 . . . . 5 if(0 = 0, ∅, (𝑁‘(0 − 1))) = ∅
4 0ex 4055 . . . . 5 ∅ ∈ V
53, 4eqeltri 2212 . . . 4 if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V
6 eqeq1 2146 . . . . . 6 (𝑥 = 0 → (𝑥 = 0 ↔ 0 = 0))
7 fvoveq1 5797 . . . . . 6 (𝑥 = 0 → (𝑁‘(𝑥 − 1)) = (𝑁‘(0 − 1)))
86, 7ifbieq2d 3496 . . . . 5 (𝑥 = 0 → if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
9 ennnfonelemh.j . . . . 5 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
108, 9fvmptg 5497 . . . 4 ((0 ∈ ℕ0 ∧ if(0 = 0, ∅, (𝑁‘(0 − 1))) ∈ V) → (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1))))
111, 5, 10mp2an 422 . . 3 (𝐽‘0) = if(0 = 0, ∅, (𝑁‘(0 − 1)))
1211, 3eqtri 2160 . 2 (𝐽‘0) = ∅
13 dmeq 4739 . . . 4 (𝑔 = ∅ → dom 𝑔 = dom ∅)
1413eleq1d 2208 . . 3 (𝑔 = ∅ → (dom 𝑔 ∈ ω ↔ dom ∅ ∈ ω))
15 fun0 5181 . . . . 5 Fun ∅
16 0ss 3401 . . . . 5 ∅ ⊆ (ω × 𝐴)
1715, 16pm3.2i 270 . . . 4 (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))
18 omex 4507 . . . . . 6 ω ∈ V
19 ennnfonelemh.f . . . . . 6 (𝜑𝐹:ω–onto𝐴)
20 focdmex 10533 . . . . . 6 ((ω ∈ V ∧ 𝐹:ω–onto𝐴) → 𝐴 ∈ V)
2118, 19, 20sylancr 410 . . . . 5 (𝜑𝐴 ∈ V)
22 elpmg 6558 . . . . 5 ((𝐴 ∈ V ∧ ω ∈ V) → (∅ ∈ (𝐴pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))))
2321, 18, 22sylancl 409 . . . 4 (𝜑 → (∅ ∈ (𝐴pm ω) ↔ (Fun ∅ ∧ ∅ ⊆ (ω × 𝐴))))
2417, 23mpbiri 167 . . 3 (𝜑 → ∅ ∈ (𝐴pm ω))
25 dm0 4753 . . . . 5 dom ∅ = ∅
26 peano1 4508 . . . . 5 ∅ ∈ ω
2725, 26eqeltri 2212 . . . 4 dom ∅ ∈ ω
2827a1i 9 . . 3 (𝜑 → dom ∅ ∈ ω)
2914, 24, 28elrabd 2842 . 2 (𝜑 → ∅ ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
3012, 29eqeltrid 2226 1 (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wral 2416  wrex 2417  {crab 2420  Vcvv 2686  cun 3069  wss 3071  c0 3363  ifcif 3474  {csn 3527  cop 3530  cmpt 3989  suc csuc 4287  ωcom 4504   × cxp 4537  ccnv 4538  dom cdm 4539  cima 4542  Fun wfun 5117  ontowfo 5121  cfv 5123  (class class class)co 5774  cmpo 5776  freccfrec 6287  pm cpm 6543  0cc0 7620  1c1 7621   + caddc 7623  cmin 7933  0cn0 8977  cz 9054  seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-1cn 7713  ax-icn 7715  ax-addcl 7716  ax-mulcl 7718  ax-i2m1 7725
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pm 6545  df-n0 8978
This theorem is referenced by:  ennnfonelemh  11917  ennnfonelem0  11918  ennnfonelemp1  11919  ennnfonelemom  11921
  Copyright terms: Public domain W3C validator