ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findes GIF version

Theorem findes 4354
Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.)
Hypotheses
Ref Expression
findes.1 [∅ / 𝑥]𝜑
findes.2 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
Assertion
Ref Expression
findes (𝑥 ∈ ω → 𝜑)

Proof of Theorem findes
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2790 . 2 (𝑧 = ∅ → ([𝑧 / 𝑥]𝜑[∅ / 𝑥]𝜑))
2 sbequ 1737 . 2 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
3 dfsbcq2 2790 . 2 (𝑧 = suc 𝑦 → ([𝑧 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
4 sbequ12r 1671 . 2 (𝑧 = 𝑥 → ([𝑧 / 𝑥]𝜑𝜑))
5 findes.1 . 2 [∅ / 𝑥]𝜑
6 nfv 1437 . . . 4 𝑥 𝑦 ∈ ω
7 nfs1v 1831 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
8 nfsbc1v 2805 . . . . 5 𝑥[suc 𝑦 / 𝑥]𝜑
97, 8nfim 1480 . . . 4 𝑥([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)
106, 9nfim 1480 . . 3 𝑥(𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
11 eleq1 2116 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
12 sbequ12 1670 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
13 suceq 4167 . . . . . 6 (𝑥 = 𝑦 → suc 𝑥 = suc 𝑦)
14 dfsbcq 2789 . . . . . 6 (suc 𝑥 = suc 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
1513, 14syl 14 . . . . 5 (𝑥 = 𝑦 → ([suc 𝑥 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
1612, 15imbi12d 227 . . . 4 (𝑥 = 𝑦 → ((𝜑[suc 𝑥 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑)))
1711, 16imbi12d 227 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑)) ↔ (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))))
18 findes.2 . . 3 (𝑥 ∈ ω → (𝜑[suc 𝑥 / 𝑥]𝜑))
1910, 17, 18chvar 1656 . 2 (𝑦 ∈ ω → ([𝑦 / 𝑥]𝜑[suc 𝑦 / 𝑥]𝜑))
201, 2, 3, 4, 5, 19finds 4351 1 (𝑥 ∈ ω → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102   = wceq 1259  wcel 1409  [wsb 1661  [wsbc 2787  c0 3252  suc csuc 4130  ωcom 4341
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-uni 3609  df-int 3644  df-suc 4136  df-iom 4342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator