![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > finds | GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
finds.5 | ⊢ 𝜓 |
finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
finds | ⊢ (𝐴 ∈ ω → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
2 | 0ex 4160 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | elab 2908 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
5 | 1, 4 | mpbir 146 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
7 | vex 2766 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
9 | 7, 8 | elab 2908 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
10 | 7 | sucex 4535 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
12 | 10, 11 | elab 2908 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
13 | 6, 9, 12 | 3imtr4g 205 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
14 | 13 | rgen 2550 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
15 | peano5 4634 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
16 | 5, 14, 15 | mp2an 426 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
17 | 16 | sseli 3179 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
19 | 18 | elabg 2910 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
20 | 17, 19 | mpbid 147 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ⊆ wss 3157 ∅c0 3450 suc csuc 4400 ωcom 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 |
This theorem is referenced by: findes 4639 nn0suc 4640 elomssom 4641 ordom 4643 nndceq0 4654 0elnn 4655 omsinds 4658 nna0r 6536 nnm0r 6537 nnsucelsuc 6549 nneneq 6918 php5 6919 php5dom 6924 fidcenumlemrk 7018 fidcenumlemr 7019 nninfninc 7187 nnnninfeq 7192 nnnninfeq2 7193 frec2uzltd 10480 frecuzrdgg 10493 seq3val 10537 seqvalcd 10538 omgadd 10879 zfz1iso 10918 ennnfonelemhom 12608 nninfsellemdc 15621 |
Copyright terms: Public domain | W3C validator |