![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > finds | GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
finds.1 | ⊢ (x = ∅ → (φ ↔ ψ)) |
finds.2 | ⊢ (x = y → (φ ↔ χ)) |
finds.3 | ⊢ (x = suc y → (φ ↔ θ)) |
finds.4 | ⊢ (x = A → (φ ↔ τ)) |
finds.5 | ⊢ ψ |
finds.6 | ⊢ (y ∈ 𝜔 → (χ → θ)) |
Ref | Expression |
---|---|
finds | ⊢ (A ∈ 𝜔 → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds.5 | . . . . 5 ⊢ ψ | |
2 | 0ex 3875 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | finds.1 | . . . . . 6 ⊢ (x = ∅ → (φ ↔ ψ)) | |
4 | 2, 3 | elab 2681 | . . . . 5 ⊢ (∅ ∈ {x ∣ φ} ↔ ψ) |
5 | 1, 4 | mpbir 134 | . . . 4 ⊢ ∅ ∈ {x ∣ φ} |
6 | finds.6 | . . . . . 6 ⊢ (y ∈ 𝜔 → (χ → θ)) | |
7 | vex 2554 | . . . . . . 7 ⊢ y ∈ V | |
8 | finds.2 | . . . . . . 7 ⊢ (x = y → (φ ↔ χ)) | |
9 | 7, 8 | elab 2681 | . . . . . 6 ⊢ (y ∈ {x ∣ φ} ↔ χ) |
10 | 7 | sucex 4191 | . . . . . . 7 ⊢ suc y ∈ V |
11 | finds.3 | . . . . . . 7 ⊢ (x = suc y → (φ ↔ θ)) | |
12 | 10, 11 | elab 2681 | . . . . . 6 ⊢ (suc y ∈ {x ∣ φ} ↔ θ) |
13 | 6, 9, 12 | 3imtr4g 194 | . . . . 5 ⊢ (y ∈ 𝜔 → (y ∈ {x ∣ φ} → suc y ∈ {x ∣ φ})) |
14 | 13 | rgen 2368 | . . . 4 ⊢ ∀y ∈ 𝜔 (y ∈ {x ∣ φ} → suc y ∈ {x ∣ φ}) |
15 | peano5 4264 | . . . 4 ⊢ ((∅ ∈ {x ∣ φ} ∧ ∀y ∈ 𝜔 (y ∈ {x ∣ φ} → suc y ∈ {x ∣ φ})) → 𝜔 ⊆ {x ∣ φ}) | |
16 | 5, 14, 15 | mp2an 402 | . . 3 ⊢ 𝜔 ⊆ {x ∣ φ} |
17 | 16 | sseli 2935 | . 2 ⊢ (A ∈ 𝜔 → A ∈ {x ∣ φ}) |
18 | finds.4 | . . 3 ⊢ (x = A → (φ ↔ τ)) | |
19 | 18 | elabg 2682 | . 2 ⊢ (A ∈ 𝜔 → (A ∈ {x ∣ φ} ↔ τ)) |
20 | 17, 19 | mpbid 135 | 1 ⊢ (A ∈ 𝜔 → τ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1242 ∈ wcel 1390 {cab 2023 ∀wral 2300 ⊆ wss 2911 ∅c0 3218 suc csuc 4068 𝜔com 4256 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-13 1401 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-nul 3874 ax-pow 3918 ax-pr 3935 ax-un 4136 ax-iinf 4254 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-dif 2914 df-un 2916 df-in 2918 df-ss 2925 df-nul 3219 df-pw 3353 df-sn 3373 df-pr 3374 df-uni 3572 df-int 3607 df-suc 4074 df-iom 4257 |
This theorem is referenced by: findes 4269 nn0suc 4270 elnn 4271 ordom 4272 nndceq0 4282 0elnn 4283 nna0r 5996 nnm0r 5997 nnsucelsuc 6009 frec2uzltd 8870 |
Copyright terms: Public domain | W3C validator |