ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvunsng GIF version

Theorem fvunsng 5385
Description: Remove an ordered pair not participating in a function value. (Contributed by Jim Kingdon, 7-Jan-2019.)
Assertion
Ref Expression
fvunsng ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))

Proof of Theorem fvunsng
StepHypRef Expression
1 snidg 3428 . . . 4 (𝐷𝑉𝐷 ∈ {𝐷})
2 fvres 5226 . . . 4 (𝐷 ∈ {𝐷} → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷))
31, 2syl 14 . . 3 (𝐷𝑉 → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷))
4 resundir 4654 . . . . 5 ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷}))
5 elsni 3421 . . . . . . . . 9 (𝐵 ∈ {𝐷} → 𝐵 = 𝐷)
65necon3ai 2269 . . . . . . . 8 (𝐵𝐷 → ¬ 𝐵 ∈ {𝐷})
7 ressnop0 5372 . . . . . . . 8 𝐵 ∈ {𝐷} → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅)
86, 7syl 14 . . . . . . 7 (𝐵𝐷 → ({⟨𝐵, 𝐶⟩} ↾ {𝐷}) = ∅)
98uneq2d 3125 . . . . . 6 (𝐵𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = ((𝐴 ↾ {𝐷}) ∪ ∅))
10 un0 3279 . . . . . 6 ((𝐴 ↾ {𝐷}) ∪ ∅) = (𝐴 ↾ {𝐷})
119, 10syl6eq 2104 . . . . 5 (𝐵𝐷 → ((𝐴 ↾ {𝐷}) ∪ ({⟨𝐵, 𝐶⟩} ↾ {𝐷})) = (𝐴 ↾ {𝐷}))
124, 11syl5eq 2100 . . . 4 (𝐵𝐷 → ((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷}) = (𝐴 ↾ {𝐷}))
1312fveq1d 5208 . . 3 (𝐵𝐷 → (((𝐴 ∪ {⟨𝐵, 𝐶⟩}) ↾ {𝐷})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷))
143, 13sylan9req 2109 . 2 ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = ((𝐴 ↾ {𝐷})‘𝐷))
15 fvres 5226 . . . 4 (𝐷 ∈ {𝐷} → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
161, 15syl 14 . . 3 (𝐷𝑉 → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
1716adantr 265 . 2 ((𝐷𝑉𝐵𝐷) → ((𝐴 ↾ {𝐷})‘𝐷) = (𝐴𝐷))
1814, 17eqtrd 2088 1 ((𝐷𝑉𝐵𝐷) → ((𝐴 ∪ {⟨𝐵, 𝐶⟩})‘𝐷) = (𝐴𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101   = wceq 1259  wcel 1409  wne 2220  cun 2943  c0 3252  {csn 3403  cop 3406  cres 4375  cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-xp 4379  df-res 4385  df-iota 4895  df-fv 4938
This theorem is referenced by:  fvpr1  5393  fvpr1g  5395  fvpr2g  5396  fvtp1g  5397  tfrlemisucaccv  5970  ac6sfi  6383
  Copyright terms: Public domain W3C validator