ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadiflem GIF version

Theorem imadiflem 5006
Description: One direction of imadif 5007. This direction does not require Fun 𝐹. (Contributed by Jim Kingdon, 25-Dec-2018.)
Assertion
Ref Expression
imadiflem ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))

Proof of Theorem imadiflem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2329 . . . 4 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
2 df-rex 2329 . . . . 5 (∃𝑥𝐵 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
32notbii 604 . . . 4 (¬ ∃𝑥𝐵 𝑥𝐹𝑦 ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
4 alnex 1404 . . . . . . 7 (∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦))
5 19.29r 1528 . . . . . . 7 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ∀𝑥 ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
64, 5sylan2br 276 . . . . . 6 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)))
7 simpl 106 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥𝐴𝑥𝐹𝑦))
8 simplr 490 . . . . . . . . . 10 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → 𝑥𝐹𝑦)
9 simpr 107 . . . . . . . . . . 11 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ¬ (𝑥𝐵𝑥𝐹𝑦))
10 ancom 257 . . . . . . . . . . . . 13 ((𝑥𝐵𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦𝑥𝐵))
1110notbii 604 . . . . . . . . . . . 12 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ ¬ (𝑥𝐹𝑦𝑥𝐵))
12 imnan 634 . . . . . . . . . . . 12 ((𝑥𝐹𝑦 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐹𝑦𝑥𝐵))
1311, 12bitr4i 180 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥𝐹𝑦) ↔ (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
149, 13sylib 131 . . . . . . . . . 10 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥𝐹𝑦 → ¬ 𝑥𝐵))
158, 14mpd 13 . . . . . . . . 9 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ¬ 𝑥𝐵)
167, 15, 8jca32 297 . . . . . . . 8 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
17 eldif 2955 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1817anbi1i 439 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦))
19 anandir 533 . . . . . . . . 9 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
2018, 19bitri 177 . . . . . . . 8 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦) ↔ ((𝑥𝐴𝑥𝐹𝑦) ∧ (¬ 𝑥𝐵𝑥𝐹𝑦)))
2116, 20sylibr 141 . . . . . . 7 (((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → (𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2221eximi 1507 . . . . . 6 (∃𝑥((𝑥𝐴𝑥𝐹𝑦) ∧ ¬ (𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
236, 22syl 14 . . . . 5 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
24 df-rex 2329 . . . . 5 (∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝑥𝐹𝑦))
2523, 24sylibr 141 . . . 4 ((∃𝑥(𝑥𝐴𝑥𝐹𝑦) ∧ ¬ ∃𝑥(𝑥𝐵𝑥𝐹𝑦)) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦)
261, 3, 25syl2anb 279 . . 3 ((∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦) → ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦)
2726ss2abi 3040 . 2 {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)} ⊆ {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
28 dfima2 4698 . . . 4 (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦}
29 dfima2 4698 . . . 4 (𝐹𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}
3028, 29difeq12i 3088 . . 3 ((𝐹𝐴) ∖ (𝐹𝐵)) = ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦})
31 difab 3234 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑥𝐹𝑦} ∖ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐹𝑦}) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
3230, 31eqtri 2076 . 2 ((𝐹𝐴) ∖ (𝐹𝐵)) = {𝑦 ∣ (∃𝑥𝐴 𝑥𝐹𝑦 ∧ ¬ ∃𝑥𝐵 𝑥𝐹𝑦)}
33 dfima2 4698 . 2 (𝐹 “ (𝐴𝐵)) = {𝑦 ∣ ∃𝑥 ∈ (𝐴𝐵)𝑥𝐹𝑦}
3427, 32, 333sstr4i 3012 1 ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wal 1257  wex 1397  wcel 1409  {cab 2042  wrex 2324  cdif 2942  wss 2945   class class class wbr 3792  cima 4376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-xp 4379  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386
This theorem is referenced by:  imadif  5007
  Copyright terms: Public domain W3C validator