![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulid2 | GIF version |
Description: Identity law for multiplication. Note: see mulid1 7178 for commuted version. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
mulid2 | ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7131 | . . 3 ⊢ 1 ∈ ℂ | |
2 | mulcom 7164 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1)) | |
3 | 1, 2 | mpan 415 | . 2 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1)) |
4 | mulid1 7178 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | |
5 | 3, 4 | eqtrd 2114 | 1 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 (class class class)co 5543 ℂcc 7041 1c1 7044 · cmul 7048 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-resscn 7130 ax-1cn 7131 ax-icn 7133 ax-addcl 7134 ax-mulcl 7136 ax-mulcom 7139 ax-mulass 7141 ax-distr 7142 ax-1rid 7145 ax-cnre 7149 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 |
This theorem is referenced by: mulid2i 7184 mulid2d 7199 muladd11 7308 1p1times 7309 mulm1 7571 div1 7858 recdivap 7873 divdivap2 7879 conjmulap 7884 expp1 9580 recan 10133 gcdadd 10520 gcdid 10521 |
Copyright terms: Public domain | W3C validator |