ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulid2 GIF version

Theorem mulid2 7179
Description: Identity law for multiplication. Note: see mulid1 7178 for commuted version. (Contributed by NM, 8-Oct-1999.)
Assertion
Ref Expression
mulid2 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)

Proof of Theorem mulid2
StepHypRef Expression
1 ax-1cn 7131 . . 3 1 ∈ ℂ
2 mulcom 7164 . . 3 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = (𝐴 · 1))
31, 2mpan 415 . 2 (𝐴 ∈ ℂ → (1 · 𝐴) = (𝐴 · 1))
4 mulid1 7178 . 2 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
53, 4eqtrd 2114 1 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  (class class class)co 5543  cc 7041  1c1 7044   · cmul 7048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-resscn 7130  ax-1cn 7131  ax-icn 7133  ax-addcl 7134  ax-mulcl 7136  ax-mulcom 7139  ax-mulass 7141  ax-distr 7142  ax-1rid 7145  ax-cnre 7149
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-iota 4897  df-fv 4940  df-ov 5546
This theorem is referenced by:  mulid2i  7184  mulid2d  7199  muladd11  7308  1p1times  7309  mulm1  7571  div1  7858  recdivap  7873  divdivap2  7879  conjmulap  7884  expp1  9580  recan  10133  gcdadd  10520  gcdid  10521
  Copyright terms: Public domain W3C validator