Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexg GIF version

Theorem pwexg 3960
 Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
pwexg (𝐴𝑉 → 𝒫 𝐴 ∈ V)

Proof of Theorem pwexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 3389 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21eleq1d 2122 . 2 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V))
3 vex 2577 . . 3 𝑥 ∈ V
43pwex 3959 . 2 𝒫 𝑥 ∈ V
52, 4vtoclg 2630 1 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1259   ∈ wcel 1409  Vcvv 2574  𝒫 cpw 3386 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2951  df-ss 2958  df-pw 3388 This theorem is referenced by:  abssexg  3961  snexgOLD  3962  snexg  3963  pwel  3981  uniexb  4232  xpexg  4479  fabexg  5104  fopwdom  6340
 Copyright terms: Public domain W3C validator