ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdg0g GIF version

Theorem rdg0g 6057
Description: The initial value of the recursive definition generator. (Contributed by NM, 25-Apr-1995.)
Assertion
Ref Expression
rdg0g (𝐴𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴)

Proof of Theorem rdg0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgeq2 6041 . . . 4 (𝑥 = 𝐴 → rec(𝐹, 𝑥) = rec(𝐹, 𝐴))
21fveq1d 5231 . . 3 (𝑥 = 𝐴 → (rec(𝐹, 𝑥)‘∅) = (rec(𝐹, 𝐴)‘∅))
3 id 19 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
42, 3eqeq12d 2097 . 2 (𝑥 = 𝐴 → ((rec(𝐹, 𝑥)‘∅) = 𝑥 ↔ (rec(𝐹, 𝐴)‘∅) = 𝐴))
5 vex 2613 . . 3 𝑥 ∈ V
65rdg0 6056 . 2 (rec(𝐹, 𝑥)‘∅) = 𝑥
74, 6vtoclg 2667 1 (𝐴𝐶 → (rec(𝐹, 𝐴)‘∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  c0 3267  cfv 4952  reccrdg 6038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-res 4403  df-iota 4917  df-fun 4954  df-fn 4955  df-fv 4960  df-recs 5974  df-irdg 6039
This theorem is referenced by:  frecrdg  6077  oa0  6121  oei0  6123
  Copyright terms: Public domain W3C validator