Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemcl GIF version

Theorem trilpolemcl 13230
Description: Lemma for trilpo 13236. The sum exists. (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
Assertion
Ref Expression
trilpolemcl (𝜑𝐴 ∈ ℝ)
Distinct variable groups:   𝑖,𝐹   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem trilpolemcl
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 trilpolemgt1.a . 2 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
2 nnuz 9361 . . 3 ℕ = (ℤ‘1)
3 1zzd 9081 . . 3 (𝜑 → 1 ∈ ℤ)
4 eqid 2139 . . . 4 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
5 oveq2 5782 . . . . . 6 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
65oveq2d 5790 . . . . 5 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
7 fveq2 5421 . . . . 5 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
86, 7oveq12d 5792 . . . 4 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
9 simpr 109 . . . 4 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
10 2rp 9446 . . . . . . . 8 2 ∈ ℝ+
1110a1i 9 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 2 ∈ ℝ+)
12 nnz 9073 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℤ)
1312adantl 275 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1411, 13rpexpcld 10448 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1514rprecred 9495 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
16 0re 7766 . . . . . . . 8 0 ∈ ℝ
17 eleq1 2202 . . . . . . . 8 ((𝐹𝑖) = 0 → ((𝐹𝑖) ∈ ℝ ↔ 0 ∈ ℝ))
1816, 17mpbiri 167 . . . . . . 7 ((𝐹𝑖) = 0 → (𝐹𝑖) ∈ ℝ)
1918a1i 9 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 → (𝐹𝑖) ∈ ℝ))
20 1re 7765 . . . . . . . 8 1 ∈ ℝ
21 eleq1 2202 . . . . . . . 8 ((𝐹𝑖) = 1 → ((𝐹𝑖) ∈ ℝ ↔ 1 ∈ ℝ))
2220, 21mpbiri 167 . . . . . . 7 ((𝐹𝑖) = 1 → (𝐹𝑖) ∈ ℝ)
2322a1i 9 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 1 → (𝐹𝑖) ∈ ℝ))
24 trilpolemgt1.f . . . . . . . 8 (𝜑𝐹:ℕ⟶{0, 1})
2524ffvelrnda 5555 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
26 elpri 3550 . . . . . . 7 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
2725, 26syl 14 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
2819, 23, 27mpjaod 707 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
2915, 28remulcld 7796 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
304, 8, 9, 29fvmptd3 5514 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
3124, 4trilpolemclim 13229 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
322, 3, 30, 29, 31isumrecl 11198 . 2 (𝜑 → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
331, 32eqeltrid 2226 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480  {cpr 3528  cmpt 3989  wf 5119  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   · cmul 7625   / cdiv 8432  cn 8720  2c2 8771  cz 9054  +crp 9441  cexp 10292  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  trilpolemgt1  13232  trilpolemeq1  13233  trilpolemlt1  13234  trilpo  13236
  Copyright terms: Public domain W3C validator