MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mpo0 Structured version   Visualization version   GIF version

Theorem 0mpo0 7237
Description: A mapping operation with empty domain is empty. Generalization of mpo0 7239. (Contributed by AV, 27-Jan-2024.)
Assertion
Ref Expression
0mpo0 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴   𝑥,𝐵   𝑦,𝐵
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem 0mpo0
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpo 7161 . . 3 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
2 df-oprab 7160 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))}
31, 2eqtri 2844 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))}
4 nel02 4298 . . . . . . . . . 10 (𝐴 = ∅ → ¬ 𝑥𝐴)
5 nel02 4298 . . . . . . . . . 10 (𝐵 = ∅ → ¬ 𝑦𝐵)
64, 5orim12i 905 . . . . . . . . 9 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
7 ianor 978 . . . . . . . . 9 (¬ (𝑥𝐴𝑦𝐵) ↔ (¬ 𝑥𝐴 ∨ ¬ 𝑦𝐵))
86, 7sylibr 236 . . . . . . . 8 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑥𝐴𝑦𝐵))
9 simprl 769 . . . . . . . 8 ((𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)) → (𝑥𝐴𝑦𝐵))
108, 9nsyl 142 . . . . . . 7 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ (𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))
1110nexdv 1937 . . . . . 6 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))
1211nexdv 1937 . . . . 5 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))
1312nexdv 1937 . . . 4 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ¬ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))
1413alrimiv 1928 . . 3 ((𝐴 = ∅ ∨ 𝐵 = ∅) → ∀𝑤 ¬ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))
15 ab0 4333 . . 3 ({𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))} = ∅ ↔ ∀𝑤 ¬ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)))
1614, 15sylibr 236 . 2 ((𝐴 = ∅ ∨ 𝐵 = ∅) → {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶))} = ∅)
173, 16syl5eq 2868 1 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2799  c0 4291  cop 4573  {coprab 7157  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-dif 3939  df-nul 4292  df-oprab 7160  df-mpo 7161
This theorem is referenced by:  mpo0v  7238  homffval  16960  comfffval  16968  natfval  17216  xpchomfval  17429  xpccofval  17432  plusffval  17858  efmndplusg  18045  grpsubfval  18147  grpsubfvalALT  18148  oppglsm  18767  dvrfval  19434  scaffval  19652  psrmulr  20164  ipffval  20792  marrepfval  21169  marepvfval  21174  pcofval  23614  clwwlknonmpo  27868  mendplusgfval  39834  mendmulrfval  39836  mendvscafval  39839
  Copyright terms: Public domain W3C validator