MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffval Structured version   Visualization version   GIF version

Theorem ipffval 20770
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipffval · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Distinct variable groups:   𝑥,𝑦, ,   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem ipffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ipffval.3 . 2 · = (·if𝑊)
2 fveq2 6651 . . . . . 6 (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊))
3 ipffval.1 . . . . . 6 𝑉 = (Base‘𝑊)
42, 3syl6eqr 2873 . . . . 5 (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉)
5 fveq2 6651 . . . . . . 7 (𝑔 = 𝑊 → (·𝑖𝑔) = (·𝑖𝑊))
6 ipffval.2 . . . . . . 7 , = (·𝑖𝑊)
75, 6syl6eqr 2873 . . . . . 6 (𝑔 = 𝑊 → (·𝑖𝑔) = , )
87oveqd 7154 . . . . 5 (𝑔 = 𝑊 → (𝑥(·𝑖𝑔)𝑦) = (𝑥 , 𝑦))
94, 4, 8mpoeq123dv 7210 . . . 4 (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
10 df-ipf 20749 . . . 4 ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
113fvexi 6665 . . . . 5 𝑉 ∈ V
126fvexi 6665 . . . . . . 7 , ∈ V
1312rnex 7598 . . . . . 6 ran , ∈ V
14 p0ex 5266 . . . . . 6 {∅} ∈ V
1513, 14unex 7450 . . . . 5 (ran , ∪ {∅}) ∈ V
16 df-ov 7140 . . . . . . 7 (𝑥 , 𝑦) = ( , ‘⟨𝑥, 𝑦⟩)
17 fvrn0 6679 . . . . . . 7 ( , ‘⟨𝑥, 𝑦⟩) ∈ (ran , ∪ {∅})
1816, 17eqeltri 2907 . . . . . 6 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
1918rgen2w 3146 . . . . 5 𝑥𝑉𝑦𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
2011, 11, 15, 19mpoexw 7757 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) ∈ V
219, 10, 20fvmpt 6749 . . 3 (𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
22 fvprc 6644 . . . 4 𝑊 ∈ V → (·if𝑊) = ∅)
23 fvprc 6644 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
243, 23syl5eq 2867 . . . . . 6 𝑊 ∈ V → 𝑉 = ∅)
2524olcd 870 . . . . 5 𝑊 ∈ V → (𝑉 = ∅ ∨ 𝑉 = ∅))
26 0mpo0 7218 . . . . 5 ((𝑉 = ∅ ∨ 𝑉 = ∅) → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = ∅)
2725, 26syl 17 . . . 4 𝑊 ∈ V → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = ∅)
2822, 27eqtr4d 2858 . . 3 𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
2921, 28pm2.61i 184 . 2 (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
301, 29eqtri 2843 1 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1537  wcel 2114  Vcvv 3481  cun 3917  c0 4274  {csn 4548  cop 4554  ran crn 5537  cfv 6336  (class class class)co 7137  cmpo 7139  Basecbs 16461  ·𝑖cip 16548  ·ifcipf 20747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344  df-ov 7140  df-oprab 7141  df-mpo 7142  df-1st 7670  df-2nd 7671  df-ipf 20749
This theorem is referenced by:  ipfval  20771  ipfeq  20772  ipffn  20773  phlipf  20774  phssip  20780
  Copyright terms: Public domain W3C validator