MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Structured version   Visualization version   GIF version

Theorem acnlem 9474
Description: Construct a mapping satisfying the consequent of isacn 9470. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐴   𝐵,𝑔
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 6699 . . . . . 6 (𝑓𝑥) ⊆ ran 𝑓
2 simpr 487 . . . . . 6 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ∈ (𝑓𝑥))
31, 2sseldi 3965 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → 𝐵 ran 𝑓)
43ralimiaa 3159 . . . 4 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 𝐵 ran 𝑓)
5 eqid 2821 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
65fmpt 6874 . . . 4 (∀𝑥𝐴 𝐵 ran 𝑓 ↔ (𝑥𝐴𝐵):𝐴 ran 𝑓)
74, 6sylib 220 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → (𝑥𝐴𝐵):𝐴 ran 𝑓)
8 id 22 . . 3 (𝐴𝑉𝐴𝑉)
9 vex 3497 . . . . . 6 𝑓 ∈ V
109rnex 7617 . . . . 5 ran 𝑓 ∈ V
1110uniex 7467 . . . 4 ran 𝑓 ∈ V
12 fex2 7638 . . . 4 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉 ran 𝑓 ∈ V) → (𝑥𝐴𝐵) ∈ V)
1311, 12mp3an3 1446 . . 3 (((𝑥𝐴𝐵):𝐴 ran 𝑓𝐴𝑉) → (𝑥𝐴𝐵) ∈ V)
147, 8, 13syl2anr 598 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → (𝑥𝐴𝐵) ∈ V)
155fvmpt2 6779 . . . . 5 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
1615, 2eqeltrd 2913 . . . 4 ((𝑥𝐴𝐵 ∈ (𝑓𝑥)) → ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1716ralimiaa 3159 . . 3 (∀𝑥𝐴 𝐵 ∈ (𝑓𝑥) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
1817adantl 484 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥))
19 nfmpt1 5164 . . . 4 𝑥(𝑥𝐴𝐵)
2019nfeq2 2995 . . 3 𝑥 𝑔 = (𝑥𝐴𝐵)
21 fveq1 6669 . . . 4 (𝑔 = (𝑥𝐴𝐵) → (𝑔𝑥) = ((𝑥𝐴𝐵)‘𝑥))
2221eleq1d 2897 . . 3 (𝑔 = (𝑥𝐴𝐵) → ((𝑔𝑥) ∈ (𝑓𝑥) ↔ ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2320, 22ralbid 3231 . 2 (𝑔 = (𝑥𝐴𝐵) → (∀𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥) ↔ ∀𝑥𝐴 ((𝑥𝐴𝐵)‘𝑥) ∈ (𝑓𝑥)))
2414, 18, 23spcedv 3599 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵 ∈ (𝑓𝑥)) → ∃𝑔𝑥𝐴 (𝑔𝑥) ∈ (𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3138  Vcvv 3494   cuni 4838  cmpt 5146  ran crn 5556  wf 6351  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363
This theorem is referenced by:  numacn  9475  acndom  9477  acndom2  9480
  Copyright terms: Public domain W3C validator