HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  axhfvadd-zf Structured version   Visualization version   GIF version

Theorem axhfvadd-zf 27727
Description: Derive axiom ax-hfvadd 27745 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
axhil.1 𝑈 = ⟨⟨ + , · ⟩, norm
axhil.2 𝑈 ∈ CHilOLD
Assertion
Ref Expression
axhfvadd-zf + :( ℋ × ℋ)⟶ ℋ

Proof of Theorem axhfvadd-zf
StepHypRef Expression
1 axhil.2 . 2 𝑈 ∈ CHilOLD
2 df-hba 27714 . . . 4 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
3 axhil.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
43fveq2i 6161 . . . 4 (BaseSet‘𝑈) = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
52, 4eqtr4i 2646 . . 3 ℋ = (BaseSet‘𝑈)
61hlnvi 27636 . . . 4 𝑈 ∈ NrmCVec
73, 6h2hva 27719 . . 3 + = ( +𝑣𝑈)
85, 7hladdf 27643 . 2 (𝑈 ∈ CHilOLD → + :( ℋ × ℋ)⟶ ℋ)
91, 8ax-mp 5 1 + :( ℋ × ℋ)⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1480  wcel 1987  cop 4161   × cxp 5082  wf 5853  cfv 5857  BaseSetcba 27329  CHilOLDchlo 27629  chil 27664   + cva 27665   · csm 27666  normcno 27668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-1st 7128  df-2nd 7129  df-grpo 27235  df-ablo 27287  df-vc 27302  df-nv 27335  df-va 27338  df-ba 27339  df-sm 27340  df-0v 27341  df-nmcv 27343  df-cbn 27607  df-hlo 27630  df-hba 27714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator