Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnd2lem Structured version   Visualization version   GIF version

Theorem bnd2lem 35084
Description: Lemma for equivbnd2 35085 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.)
Hypothesis
Ref Expression
bnd2lem.1 𝐷 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
bnd2lem ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)

Proof of Theorem bnd2lem
StepHypRef Expression
1 bnd2lem.1 . . . . . 6 𝐷 = (𝑀 ↾ (𝑌 × 𝑌))
2 resss 5878 . . . . . 6 (𝑀 ↾ (𝑌 × 𝑌)) ⊆ 𝑀
31, 2eqsstri 4001 . . . . 5 𝐷𝑀
4 dmss 5771 . . . . 5 (𝐷𝑀 → dom 𝐷 ⊆ dom 𝑀)
53, 4mp1i 13 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 ⊆ dom 𝑀)
6 bndmet 35074 . . . . . 6 (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌))
7 metf 22940 . . . . . 6 (𝐷 ∈ (Met‘𝑌) → 𝐷:(𝑌 × 𝑌)⟶ℝ)
8 fdm 6522 . . . . . 6 (𝐷:(𝑌 × 𝑌)⟶ℝ → dom 𝐷 = (𝑌 × 𝑌))
96, 7, 83syl 18 . . . . 5 (𝐷 ∈ (Bnd‘𝑌) → dom 𝐷 = (𝑌 × 𝑌))
109adantl 484 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝐷 = (𝑌 × 𝑌))
11 metf 22940 . . . . . 6 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
1211fdmd 6523 . . . . 5 (𝑀 ∈ (Met‘𝑋) → dom 𝑀 = (𝑋 × 𝑋))
1312adantr 483 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom 𝑀 = (𝑋 × 𝑋))
145, 10, 133sstr3d 4013 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → (𝑌 × 𝑌) ⊆ (𝑋 × 𝑋))
15 dmss 5771 . . 3 ((𝑌 × 𝑌) ⊆ (𝑋 × 𝑋) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
1614, 15syl 17 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → dom (𝑌 × 𝑌) ⊆ dom (𝑋 × 𝑋))
17 dmxpid 5800 . 2 dom (𝑌 × 𝑌) = 𝑌
18 dmxpid 5800 . 2 dom (𝑋 × 𝑋) = 𝑋
1916, 17, 183sstr3g 4011 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3936   × cxp 5553  dom cdm 5555  cres 5557  wf 6351  cfv 6355  cr 10536  Metcmet 20531  Bndcbnd 35060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-met 20539  df-bnd 35072
This theorem is referenced by:  equivbnd2  35085  prdsbnd2  35088  cntotbnd  35089  cnpwstotbnd  35090
  Copyright terms: Public domain W3C validator