Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1280 Structured version   Visualization version   GIF version

Theorem bnj1280 30176
Description: Technical lemma for bnj60 30218. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1280.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1280.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1280.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1280.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1280.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1280.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1280.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
bnj1280.17 (𝜓 → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅)
Assertion
Ref Expression
bnj1280 (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑑,𝑓   𝐵,𝑓,𝑔   𝐵,,𝑓   𝐷,𝑑,𝑥   𝑓,𝐺,𝑔   ,𝐺   𝑅,𝑑,𝑓   𝑔,𝑌   ,𝑌   𝑔,𝑑   𝑥,𝑓,𝑔   ,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑔,)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑦,𝑓,𝑔,)   𝑅(𝑥,𝑦,𝑔,)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1280
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj1280.1 . . . . . . . 8 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1280.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1280.3 . . . . . . . 8 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 bnj1280.4 . . . . . . . 8 𝐷 = (dom 𝑔 ∩ dom )
5 bnj1280.5 . . . . . . . 8 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
6 bnj1280.6 . . . . . . . 8 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
7 bnj1280.7 . . . . . . . 8 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
81, 2, 3, 4, 5, 6, 7bnj1286 30175 . . . . . . 7 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷)
98sseld 3566 . . . . . 6 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑧𝐷))
10 bnj1280.17 . . . . . . . . 9 (𝜓 → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅)
11 disj1 3970 . . . . . . . . 9 (( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅ ↔ ∀𝑧(𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧𝐸))
1210, 11sylib 206 . . . . . . . 8 (𝜓 → ∀𝑧(𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧𝐸))
131219.21bi 2046 . . . . . . 7 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧𝐸))
14 fveq2 6088 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑔𝑥) = (𝑔𝑧))
15 fveq2 6088 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥) = (𝑧))
1614, 15neeq12d 2842 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑔𝑥) ≠ (𝑥) ↔ (𝑔𝑧) ≠ (𝑧)))
1716, 5elrab2 3332 . . . . . . . . 9 (𝑧𝐸 ↔ (𝑧𝐷 ∧ (𝑔𝑧) ≠ (𝑧)))
1817notbii 308 . . . . . . . 8 𝑧𝐸 ↔ ¬ (𝑧𝐷 ∧ (𝑔𝑧) ≠ (𝑧)))
19 imnan 436 . . . . . . . 8 ((𝑧𝐷 → ¬ (𝑔𝑧) ≠ (𝑧)) ↔ ¬ (𝑧𝐷 ∧ (𝑔𝑧) ≠ (𝑧)))
20 nne 2785 . . . . . . . . 9 (¬ (𝑔𝑧) ≠ (𝑧) ↔ (𝑔𝑧) = (𝑧))
2120imbi2i 324 . . . . . . . 8 ((𝑧𝐷 → ¬ (𝑔𝑧) ≠ (𝑧)) ↔ (𝑧𝐷 → (𝑔𝑧) = (𝑧)))
2218, 19, 213bitr2i 286 . . . . . . 7 𝑧𝐸 ↔ (𝑧𝐷 → (𝑔𝑧) = (𝑧)))
2313, 22syl6ib 239 . . . . . 6 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → (𝑧𝐷 → (𝑔𝑧) = (𝑧))))
249, 23mpdd 41 . . . . 5 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → (𝑔𝑧) = (𝑧)))
2524imp 443 . . . 4 ((𝜓𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → (𝑔𝑧) = (𝑧))
26 fvres 6102 . . . . . 6 (𝑧𝐷 → ((𝑔𝐷)‘𝑧) = (𝑔𝑧))
279, 26syl6 34 . . . . 5 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ((𝑔𝐷)‘𝑧) = (𝑔𝑧)))
2827imp 443 . . . 4 ((𝜓𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((𝑔𝐷)‘𝑧) = (𝑔𝑧))
29 fvres 6102 . . . . . 6 (𝑧𝐷 → ((𝐷)‘𝑧) = (𝑧))
309, 29syl6 34 . . . . 5 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ((𝐷)‘𝑧) = (𝑧)))
3130imp 443 . . . 4 ((𝜓𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((𝐷)‘𝑧) = (𝑧))
3225, 28, 313eqtr4d 2653 . . 3 ((𝜓𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧))
3332ralrimiva 2948 . 2 (𝜓 → ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧))
348resabs1d 5335 . . . 4 (𝜓 → ((𝑔𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)))
358resabs1d 5335 . . . 4 (𝜓 → ((𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
3634, 35eqeq12d 2624 . . 3 (𝜓 → (((𝑔𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅))))
371, 2, 3, 4, 5, 6, 7bnj1256 30171 . . . . . . 7 (𝜑 → ∃𝑑𝐵 𝑔 Fn 𝑑)
384bnj1292 29974 . . . . . . . . 9 𝐷 ⊆ dom 𝑔
39 fndm 5890 . . . . . . . . 9 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
4038, 39syl5sseq 3615 . . . . . . . 8 (𝑔 Fn 𝑑𝐷𝑑)
41 fnssres 5904 . . . . . . . 8 ((𝑔 Fn 𝑑𝐷𝑑) → (𝑔𝐷) Fn 𝐷)
4240, 41mpdan 698 . . . . . . 7 (𝑔 Fn 𝑑 → (𝑔𝐷) Fn 𝐷)
4337, 42bnj31 29873 . . . . . 6 (𝜑 → ∃𝑑𝐵 (𝑔𝐷) Fn 𝐷)
4443bnj1265 29971 . . . . 5 (𝜑 → (𝑔𝐷) Fn 𝐷)
457, 44bnj835 29917 . . . 4 (𝜓 → (𝑔𝐷) Fn 𝐷)
461, 2, 3, 4, 5, 6, 7bnj1259 30172 . . . . . . 7 (𝜑 → ∃𝑑𝐵 Fn 𝑑)
474bnj1293 29975 . . . . . . . . 9 𝐷 ⊆ dom
48 fndm 5890 . . . . . . . . 9 ( Fn 𝑑 → dom = 𝑑)
4947, 48syl5sseq 3615 . . . . . . . 8 ( Fn 𝑑𝐷𝑑)
50 fnssres 5904 . . . . . . . 8 (( Fn 𝑑𝐷𝑑) → (𝐷) Fn 𝐷)
5149, 50mpdan 698 . . . . . . 7 ( Fn 𝑑 → (𝐷) Fn 𝐷)
5246, 51bnj31 29873 . . . . . 6 (𝜑 → ∃𝑑𝐵 (𝐷) Fn 𝐷)
5352bnj1265 29971 . . . . 5 (𝜑 → (𝐷) Fn 𝐷)
547, 53bnj835 29917 . . . 4 (𝜓 → (𝐷) Fn 𝐷)
55 fvreseq 6212 . . . 4 ((((𝑔𝐷) Fn 𝐷 ∧ (𝐷) Fn 𝐷) ∧ pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷) → (((𝑔𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧)))
5645, 54, 8, 55syl21anc 1316 . . 3 (𝜓 → (((𝑔𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧)))
5736, 56bitr3d 268 . 2 (𝜓 → ((𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧)))
5833, 57mpbird 245 1 (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030  wal 1472   = wceq 1474  wcel 1976  {cab 2595  wne 2779  wral 2895  wrex 2896  {crab 2899  cin 3538  wss 3539  c0 3873  cop 4130   class class class wbr 4577  dom cdm 5028  cres 5030   Fn wfn 5785  cfv 5790  w-bnj17 29839   predc-bnj14 29841   FrSe w-bnj15 29845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-fv 5798  df-bnj17 29840
This theorem is referenced by:  bnj1311  30180
  Copyright terms: Public domain W3C validator