HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  braval Structured version   Visualization version   GIF version

Theorem braval 27993
Description: A bra-ket juxtaposition, expressed as 𝐴𝐵 in Dirac notation, equals the inner product of the vectors. Based on definition of bra in [Prugovecki] p. 186. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
braval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))

Proof of Theorem braval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brafval 27992 . . 3 (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)))
21fveq1d 6090 . 2 (𝐴 ∈ ℋ → ((bra‘𝐴)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))‘𝐵))
3 oveq1 6534 . . 3 (𝑥 = 𝐵 → (𝑥 ·ih 𝐴) = (𝐵 ·ih 𝐴))
4 eqid 2609 . . 3 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))
5 ovex 6555 . . 3 (𝐵 ·ih 𝐴) ∈ V
63, 4, 5fvmpt 6176 . 2 (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))‘𝐵) = (𝐵 ·ih 𝐴))
72, 6sylan9eq 2663 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  cmpt 4637  cfv 5790  (class class class)co 6527  chil 26966   ·ih csp 26969  bracbr 27003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pr 4828  ax-hilex 27046
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-ov 6530  df-bra 27899
This theorem is referenced by:  braadd  27994  bramul  27995  brafnmul  28000  branmfn  28154  rnbra  28156  bra11  28157  cnvbraval  28159  kbass1  28165  kbass2  28166  kbass6  28170
  Copyright terms: Public domain W3C validator