Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coeq0i Structured version   Visualization version   GIF version

Theorem coeq0i 37135
Description: coeq0 5632 but without explicitly introducing domain and range symbols. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Assertion
Ref Expression
coeq0i ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)

Proof of Theorem coeq0i
StepHypRef Expression
1 frn 6040 . . . . . 6 (𝐵:𝐸𝐹 → ran 𝐵𝐹)
213ad2ant2 1081 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → ran 𝐵𝐹)
3 sslin 3831 . . . . 5 (ran 𝐵𝐹 → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴𝐹))
42, 3syl 17 . . . 4 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ (dom 𝐴𝐹))
5 fdm 6038 . . . . . . 7 (𝐴:𝐶𝐷 → dom 𝐴 = 𝐶)
653ad2ant1 1080 . . . . . 6 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → dom 𝐴 = 𝐶)
76ineq1d 3805 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴𝐹) = (𝐶𝐹))
8 simp3 1061 . . . . 5 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐶𝐹) = ∅)
97, 8eqtrd 2654 . . . 4 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴𝐹) = ∅)
104, 9sseqtrd 3633 . . 3 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) ⊆ ∅)
11 ss0 3965 . . 3 ((dom 𝐴 ∩ ran 𝐵) ⊆ ∅ → (dom 𝐴 ∩ ran 𝐵) = ∅)
1210, 11syl 17 . 2 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (dom 𝐴 ∩ ran 𝐵) = ∅)
13 coeq0 5632 . 2 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
1412, 13sylibr 224 1 ((𝐴:𝐶𝐷𝐵:𝐸𝐹 ∧ (𝐶𝐹) = ∅) → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1481  cin 3566  wss 3567  c0 3907  dom cdm 5104  ran crn 5105  ccom 5108  wf 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-fn 5879  df-f 5880
This theorem is referenced by:  diophren  37196
  Copyright terms: Public domain W3C validator