![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fzsplit1nn0 | Structured version Visualization version GIF version |
Description: Split a finite 1-based set of integers in the middle, allowing either end to be empty ((1...0)). (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
fzsplit1nn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11332 | . . 3 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | nnge1 11084 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 1 ≤ 𝐴) | |
3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ≤ 𝐴) |
4 | simprr 811 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ≤ 𝐵) | |
5 | nnz 11437 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ ℤ) |
7 | 1zzd 11446 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 1 ∈ ℤ) | |
8 | nn0z 11438 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ) | |
9 | 8 | ad2antrl 764 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐵 ∈ ℤ) |
10 | elfz 12370 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ (1...𝐵) ↔ (1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
11 | 6, 7, 9, 10 | syl3anc 1366 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 ∈ (1...𝐵) ↔ (1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
12 | 3, 4, 11 | mpbir2and 977 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → 𝐴 ∈ (1...𝐵)) |
13 | fzsplit 12405 | . . . . . 6 ⊢ (𝐴 ∈ (1...𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
15 | uncom 3790 | . . . . . 6 ⊢ ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)) = (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) | |
16 | oveq1 6697 | . . . . . . . . . . 11 ⊢ (𝐴 = 0 → (𝐴 + 1) = (0 + 1)) | |
17 | 16 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = (0 + 1)) |
18 | 0p1e1 11170 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
19 | 17, 18 | syl6eq 2701 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (𝐴 + 1) = 1) |
20 | 19 | oveq1d 6705 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → ((𝐴 + 1)...𝐵) = (1...𝐵)) |
21 | oveq2 6698 | . . . . . . . . . 10 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
22 | 21 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = (1...0)) |
23 | fz10 12400 | . . . . . . . . 9 ⊢ (1...0) = ∅ | |
24 | 22, 23 | syl6eq 2701 | . . . . . . . 8 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐴) = ∅) |
25 | 20, 24 | uneq12d 3801 | . . . . . . 7 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = ((1...𝐵) ∪ ∅)) |
26 | un0 4000 | . . . . . . 7 ⊢ ((1...𝐵) ∪ ∅) = (1...𝐵) | |
27 | 25, 26 | syl6eq 2701 | . . . . . 6 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (((𝐴 + 1)...𝐵) ∪ (1...𝐴)) = (1...𝐵)) |
28 | 15, 27 | syl5req 2698 | . . . . 5 ⊢ ((𝐴 = 0 ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
29 | 14, 28 | jaoian 841 | . . . 4 ⊢ (((𝐴 ∈ ℕ ∨ 𝐴 = 0) ∧ (𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵)) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
30 | 29 | ex 449 | . . 3 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
31 | 1, 30 | sylbi 207 | . 2 ⊢ (𝐴 ∈ ℕ0 → ((𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵)))) |
32 | 31 | 3impib 1281 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐴 ≤ 𝐵) → (1...𝐵) = ((1...𝐴) ∪ ((𝐴 + 1)...𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∪ cun 3605 ∅c0 3948 class class class wbr 4685 (class class class)co 6690 0cc0 9974 1c1 9975 + caddc 9977 ≤ cle 10113 ℕcn 11058 ℕ0cn0 11330 ℤcz 11415 ...cfz 12364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 |
This theorem is referenced by: eldioph2lem1 37640 |
Copyright terms: Public domain | W3C validator |