MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpo Structured version   Visualization version   GIF version

Theorem dfmpo 7797
Description: Alternate definition for the maps-to notation df-mpo 7161 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpo.1 𝐶 ∈ V
Assertion
Ref Expression
dfmpo (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem dfmpo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mpompts 7763 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶)
2 dfmpo.1 . . . . 5 𝐶 ∈ V
32csbex 5215 . . . 4 (2nd𝑤) / 𝑦𝐶 ∈ V
43csbex 5215 . . 3 (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶 ∈ V
54dfmpt 6906 . 2 (𝑤 ∈ (𝐴 × 𝐵) ↦ (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶) = 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
6 nfcv 2977 . . . . 5 𝑥𝑤
7 nfcsb1v 3907 . . . . 5 𝑥(1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
86, 7nfop 4819 . . . 4 𝑥𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
98nfsn 4643 . . 3 𝑥{⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
10 nfcv 2977 . . . . 5 𝑦𝑤
11 nfcv 2977 . . . . . 6 𝑦(1st𝑤)
12 nfcsb1v 3907 . . . . . 6 𝑦(2nd𝑤) / 𝑦𝐶
1311, 12nfcsbw 3909 . . . . 5 𝑦(1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1410, 13nfop 4819 . . . 4 𝑦𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1514nfsn 4643 . . 3 𝑦{⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
16 nfcv 2977 . . 3 𝑤{⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
17 id 22 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → 𝑤 = ⟨𝑥, 𝑦⟩)
18 csbopeq1a 7749 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶 = 𝐶)
1917, 18opeq12d 4811 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝐶⟩)
2019sneqd 4579 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → {⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩} = {⟨⟨𝑥, 𝑦⟩, 𝐶⟩})
219, 15, 16, 20iunxpf 5719 . 2 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩} = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
221, 5, 213eqtri 2848 1 (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  Vcvv 3494  csb 3883  {csn 4567  cop 4573   ciun 4919  cmpt 5146   × cxp 5553  cfv 6355  cmpo 7158  1st c1st 7687  2nd c2nd 7688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690
This theorem is referenced by:  fpar  7811
  Copyright terms: Public domain W3C validator