Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibval Structured version   Visualization version   GIF version

Theorem dibval 38293
Description: The partial isomorphism B for a lattice 𝐾. (Contributed by NM, 8-Dec-2013.)
Hypotheses
Ref Expression
dibval.b 𝐵 = (Base‘𝐾)
dibval.h 𝐻 = (LHyp‘𝐾)
dibval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dibval.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
dibval.j 𝐽 = ((DIsoA‘𝐾)‘𝑊)
dibval.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibval (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝑇(𝑓)   𝐻(𝑓)   𝐼(𝑓)   𝐽(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem dibval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dibval.b . . . . 5 𝐵 = (Base‘𝐾)
2 dibval.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 dibval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 dibval.o . . . . 5 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
5 dibval.j . . . . 5 𝐽 = ((DIsoA‘𝐾)‘𝑊)
6 dibval.i . . . . 5 𝐼 = ((DIsoB‘𝐾)‘𝑊)
71, 2, 3, 4, 5, 6dibfval 38292 . . . 4 ((𝐾𝑉𝑊𝐻) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
87adantr 483 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → 𝐼 = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })))
98fveq1d 6672 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋))
10 fveq2 6670 . . . . 5 (𝑥 = 𝑋 → (𝐽𝑥) = (𝐽𝑋))
1110xpeq1d 5584 . . . 4 (𝑥 = 𝑋 → ((𝐽𝑥) × { 0 }) = ((𝐽𝑋) × { 0 }))
12 eqid 2821 . . . 4 (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 })) = (𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))
13 fvex 6683 . . . . 5 (𝐽𝑋) ∈ V
14 snex 5332 . . . . 5 { 0 } ∈ V
1513, 14xpex 7476 . . . 4 ((𝐽𝑋) × { 0 }) ∈ V
1611, 12, 15fvmpt 6768 . . 3 (𝑋 ∈ dom 𝐽 → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
1716adantl 484 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → ((𝑥 ∈ dom 𝐽 ↦ ((𝐽𝑥) × { 0 }))‘𝑋) = ((𝐽𝑋) × { 0 }))
189, 17eqtrd 2856 1 (((𝐾𝑉𝑊𝐻) ∧ 𝑋 ∈ dom 𝐽) → (𝐼𝑋) = ((𝐽𝑋) × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {csn 4567  cmpt 5146   I cid 5459   × cxp 5553  dom cdm 5555  cres 5557  cfv 6355  Basecbs 16483  LHypclh 37135  LTrncltrn 37252  DIsoAcdia 38179  DIsoBcdib 38289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-dib 38290
This theorem is referenced by:  dibopelvalN  38294  dibval2  38295  dibvalrel  38314
  Copyright terms: Public domain W3C validator