Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmscut Structured version   Visualization version   GIF version

Theorem dmscut 33272
Description: The domain of the surreal cut operation is all separated surreal sets. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
dmscut dom |s = <<s

Proof of Theorem dmscut
Dummy variables 𝑎 𝑏 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmoprab 7255 . 2 dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
2 df-scut 33253 . . . 4 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
3 df-mpo 7161 . . . 4 (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
42, 3eqtri 2844 . . 3 |s = {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
54dmeqi 5773 . 2 dom |s = dom {⟨⟨𝑎, 𝑏⟩, 𝑐⟩ ∣ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
6 df-sslt 33251 . . . . 5 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
76relopabi 5694 . . . 4 Rel <<s
8 19.42v 1954 . . . . . 6 (∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
9 ssltss1 33257 . . . . . . . . 9 (𝑎 <<s 𝑏𝑎 No )
10 velpw 4544 . . . . . . . . 9 (𝑎 ∈ 𝒫 No 𝑎 No )
119, 10sylibr 236 . . . . . . . 8 (𝑎 <<s 𝑏𝑎 ∈ 𝒫 No )
1211pm4.71ri 563 . . . . . . 7 (𝑎 <<s 𝑏 ↔ (𝑎 ∈ 𝒫 No 𝑎 <<s 𝑏))
13 vex 3497 . . . . . . . . . 10 𝑎 ∈ V
14 vex 3497 . . . . . . . . . 10 𝑏 ∈ V
1513, 14elimasn 5954 . . . . . . . . 9 (𝑏 ∈ ( <<s “ {𝑎}) ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
16 df-br 5067 . . . . . . . . 9 (𝑎 <<s 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ <<s )
1715, 16bitr4i 280 . . . . . . . 8 (𝑏 ∈ ( <<s “ {𝑎}) ↔ 𝑎 <<s 𝑏)
1817anbi2i 624 . . . . . . 7 ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ↔ (𝑎 ∈ 𝒫 No 𝑎 <<s 𝑏))
19 riotaex 7118 . . . . . . . . 9 (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})) ∈ V
2019isseti 3508 . . . . . . . 8 𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))
2120biantru 532 . . . . . . 7 ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
2212, 18, 213bitr2i 301 . . . . . 6 (𝑎 <<s 𝑏 ↔ ((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ ∃𝑐 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
238, 22, 163bitr2ri 302 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ <<s ↔ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)}))))
2423a1i 11 . . . 4 (⊤ → (⟨𝑎, 𝑏⟩ ∈ <<s ↔ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))))
257, 24opabbi2dv 5720 . . 3 (⊤ → <<s = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))})
2625mptru 1544 . 2 <<s = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐((𝑎 ∈ 𝒫 No 𝑏 ∈ ( <<s “ {𝑎})) ∧ 𝑐 = (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))}
271, 5, 263eqtr4i 2854 1 dom |s = <<s
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wtru 1538  wex 1780  wcel 2114  wral 3138  {crab 3142  wss 3936  𝒫 cpw 4539  {csn 4567  cop 4573   cint 4876   class class class wbr 5066  {copab 5128  dom cdm 5555  cima 5558  cfv 6355  crio 7113  {coprab 7157  cmpo 7158   No csur 33147   <s cslt 33148   bday cbday 33149   <<s csslt 33250   |s cscut 33252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-riota 7114  df-oprab 7160  df-mpo 7161  df-sslt 33251  df-scut 33253
This theorem is referenced by:  scutf  33273  madeval2  33290
  Copyright terms: Public domain W3C validator