MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecss Structured version   Visualization version   GIF version

Theorem ecss 7831
Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
ecss.1 (𝜑𝑅 Er 𝑋)
Assertion
Ref Expression
ecss (𝜑 → [𝐴]𝑅𝑋)

Proof of Theorem ecss
StepHypRef Expression
1 df-ec 7789 . . 3 [𝐴]𝑅 = (𝑅 “ {𝐴})
2 imassrn 5512 . . 3 (𝑅 “ {𝐴}) ⊆ ran 𝑅
31, 2eqsstri 3668 . 2 [𝐴]𝑅 ⊆ ran 𝑅
4 ecss.1 . . 3 (𝜑𝑅 Er 𝑋)
5 errn 7809 . . 3 (𝑅 Er 𝑋 → ran 𝑅 = 𝑋)
64, 5syl 17 . 2 (𝜑 → ran 𝑅 = 𝑋)
73, 6syl5sseq 3686 1 (𝜑 → [𝐴]𝑅𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wss 3607  {csn 4210  ran crn 5144  cima 5146   Er wer 7784  [cec 7785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-er 7787  df-ec 7789
This theorem is referenced by:  qsss  7851  divsfval  16254  sylow1lem5  18063  sylow2alem2  18079  sylow2blem1  18081  sylow3lem3  18090  vitalilem2  23423
  Copyright terms: Public domain W3C validator