Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigof Structured version   Visualization version   GIF version

Theorem elbigof 42119
Description: A function of order G(x) is a function. (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigof (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ)

Proof of Theorem elbigof
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elbigo 42116 . 2 (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
2 reex 10024 . . . . 5 ℝ ∈ V
32, 2elpm2 7886 . . . 4 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
43simplbi 476 . . 3 (𝐹 ∈ (ℝ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℝ)
543ad2ant1 1081 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) → 𝐹:dom 𝐹⟶ℝ)
61, 5sylbi 207 1 (𝐹 ∈ (Ο‘𝐺) → 𝐹:dom 𝐹⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037  wcel 1989  wral 2911  wrex 2912  cin 3571  wss 3572   class class class wbr 4651  dom cdm 5112  wf 5882  cfv 5886  (class class class)co 6647  pm cpm 7855  cr 9932   · cmul 9938  +∞cpnf 10068  cle 10072  [,)cico 12174  Οcbigo 42112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-pm 7857  df-bigo 42113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator