Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo2r Structured version   Visualization version   GIF version

Theorem elbigo2r 44633
Description: Sufficient condition for a function to be of order G(x). (Contributed by AV, 18-May-2020.)
Assertion
Ref Expression
elbigo2r (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑀

Proof of Theorem elbigo2r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5069 . . . . . 6 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 344 . . . . 5 (𝑦 = 𝐶 → ((𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
32ralbidv 3197 . . . 4 (𝑦 = 𝐶 → (∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
4 oveq1 7163 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 · (𝐺𝑥)) = (𝑀 · (𝐺𝑥)))
54breq2d 5078 . . . . . 6 (𝑚 = 𝑀 → ((𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)) ↔ (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))
65imbi2d 343 . . . . 5 (𝑚 = 𝑀 → ((𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
76ralbidv 3197 . . . 4 (𝑚 = 𝑀 → (∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))) ↔ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))))
83, 7rspc2ev 3635 . . 3 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥)))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
983ad2ant3 1131 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥))))
10 elbigo2 44632 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
11103adant3 1128 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐵 (𝑦𝑥 → (𝐹𝑥) ≤ (𝑚 · (𝐺𝑥)))))
129, 11mpbird 259 1 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐵 (𝐶𝑥 → (𝐹𝑥) ≤ (𝑀 · (𝐺𝑥))))) → 𝐹 ∈ (Ο‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  wss 3936   class class class wbr 5066  wf 6351  cfv 6355  (class class class)co 7156  cr 10536   · cmul 10542  cle 10676  Οcbigo 44627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-ico 12745  df-bigo 44628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator