Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvco2 Structured version   Visualization version   GIF version

Theorem cnvco2 32996
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
cnvco2 (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5967 . 2 Rel (𝐴𝐵)
2 relco 6097 . 2 Rel (𝐵𝐴)
3 vex 3497 . . . . . 6 𝑦 ∈ V
4 vex 3497 . . . . . 6 𝑧 ∈ V
53, 4brcnv 5753 . . . . 5 (𝑦𝐵𝑧𝑧𝐵𝑦)
6 vex 3497 . . . . . . 7 𝑥 ∈ V
76, 4brcnv 5753 . . . . . 6 (𝑥𝐴𝑧𝑧𝐴𝑥)
87bicomi 226 . . . . 5 (𝑧𝐴𝑥𝑥𝐴𝑧)
95, 8anbi12ci 629 . . . 4 ((𝑦𝐵𝑧𝑧𝐴𝑥) ↔ (𝑥𝐴𝑧𝑧𝐵𝑦))
109exbii 1848 . . 3 (∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥) ↔ ∃𝑧(𝑥𝐴𝑧𝑧𝐵𝑦))
116, 3opelcnv 5752 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵))
123, 6opelco 5742 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥))
1311, 12bitri 277 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥))
146, 3opelco 5742 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐴) ↔ ∃𝑧(𝑥𝐴𝑧𝑧𝐵𝑦))
1510, 13, 143bitr4i 305 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐴))
161, 2, 15eqrelriiv 5663 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wex 1780  wcel 2114  cop 4573   class class class wbr 5066  ccnv 5554  ccom 5559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator