![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnust | Structured version Visualization version GIF version |
Description: First direction for ustbas 22078. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
elrnust | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6258 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ dom UnifOn) | |
2 | fveq2 6229 | . . . . 5 ⊢ (𝑥 = 𝑋 → (UnifOn‘𝑥) = (UnifOn‘𝑋)) | |
3 | 2 | eleq2d 2716 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑈 ∈ (UnifOn‘𝑥) ↔ 𝑈 ∈ (UnifOn‘𝑋))) |
4 | 3 | rspcev 3340 | . . 3 ⊢ ((𝑋 ∈ dom UnifOn ∧ 𝑈 ∈ (UnifOn‘𝑋)) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
5 | 1, 4 | mpancom 704 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
6 | ustfn 22052 | . . 3 ⊢ UnifOn Fn V | |
7 | fnfun 6026 | . . 3 ⊢ (UnifOn Fn V → Fun UnifOn) | |
8 | elunirn 6549 | . . 3 ⊢ (Fun UnifOn → (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥))) | |
9 | 6, 7, 8 | mp2b 10 | . 2 ⊢ (𝑈 ∈ ∪ ran UnifOn ↔ ∃𝑥 ∈ dom UnifOn𝑈 ∈ (UnifOn‘𝑥)) |
10 | 5, 9 | sylibr 224 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑈 ∈ ∪ ran UnifOn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 Vcvv 3231 ∪ cuni 4468 dom cdm 5143 ran crn 5144 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 UnifOncust 22050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-ust 22051 |
This theorem is referenced by: ustbas 22078 utopval 22083 tusval 22117 ucnval 22128 iscfilu 22139 |
Copyright terms: Public domain | W3C validator |