MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lp Structured version   Visualization version   GIF version

Theorem en3lp 9077
Description: No class has 3-cycle membership loops. This proof was automatically generated from the virtual deduction proof en3lpVD 41199 using a translation program. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
en3lp ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)

Proof of Theorem en3lp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 noel 4296 . . . . 5 ¬ 𝐶 ∈ ∅
2 eleq2 2901 . . . . 5 ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅))
31, 2mtbiri 329 . . . 4 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶})
4 tpid3g 4708 . . . 4 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
53, 4nsyl 142 . . 3 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ 𝐶𝐴)
65intn3an3d 1477 . 2 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
7 tpex 7470 . . . 4 {𝐴, 𝐵, 𝐶} ∈ V
8 zfreg 9059 . . . 4 (({𝐴, 𝐵, 𝐶} ∈ V ∧ {𝐴, 𝐵, 𝐶} ≠ ∅) → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅)
97, 8mpan 688 . . 3 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅)
10 en3lplem2 9076 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
1110com12 32 . . . . 5 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
1211necon2bd 3032 . . . 4 (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ((𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)))
1312rexlimiv 3280 . . 3 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶} (𝑥 ∩ {𝐴, 𝐵, 𝐶}) = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
149, 13syl 17 . 2 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
156, 14pm2.61ine 3100 1 ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  cin 3935  c0 4291  {ctp 4571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461  ax-reg 9056
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-sn 4568  df-pr 4570  df-tp 4572  df-uni 4839
This theorem is referenced by:  bj-inftyexpidisj  34495  tratrb  40890  tratrbVD  41215
  Copyright terms: Public domain W3C validator