MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enpr2d Structured version   Visualization version   GIF version

Theorem enpr2d 8590
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 8567 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 17 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2d.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 8102 . . . . 5 1o ∈ On
6 en2sn 8586 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 588 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2d.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 3022 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 4641 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 17 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 6290 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 11 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 4640 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 236 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 8589 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 836 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 4563 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 6190 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 5093 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 8096 . 2 2o = suc 1o
2220, 21breqtrrdi 5101 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  wcel 2113  wne 3015  cun 3927  cin 3928  c0 4284  {csn 4560  {cpr 4562   class class class wbr 5059  Oncon0 6184  suc csuc 6186  1oc1o 8088  2oc2o 8089  cen 8499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-suc 6190  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-1o 8095  df-2o 8096  df-er 8282  df-en 8503
This theorem is referenced by:  simpgnsgd  19215  2nsgsimpgd  19217
  Copyright terms: Public domain W3C validator