MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval Structured version   Visualization version   GIF version

Theorem evl1fval 19886
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1𝑜 eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑄   𝑥,𝑅
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem evl1fval
Dummy variables 𝑖 𝑟 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . 3 𝑂 = (eval1𝑅)
2 fvexd 6356 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
3 id 22 . . . . . . . . 9 (𝑏 = (Base‘𝑟) → 𝑏 = (Base‘𝑟))
4 fveq2 6344 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
5 evl1fval.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
64, 5syl6eqr 2804 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
73, 6sylan9eqr 2808 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑏 = 𝐵)
87oveq1d 6820 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏𝑚 1𝑜) = (𝐵𝑚 1𝑜))
97, 8oveq12d 6823 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑏𝑚 (𝑏𝑚 1𝑜)) = (𝐵𝑚 (𝐵𝑚 1𝑜)))
107mpteq1d 4882 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑦𝑏 ↦ (1𝑜 × {𝑦})) = (𝑦𝐵 ↦ (1𝑜 × {𝑦})))
1110coeq2d 5432 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦}))) = (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))))
129, 11mpteq12dv 4877 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))))
13 simpl 474 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → 𝑟 = 𝑅)
1413oveq2d 6821 . . . . . . 7 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1𝑜 eval 𝑟) = (1𝑜 eval 𝑅))
15 evl1fval.q . . . . . . 7 𝑄 = (1𝑜 eval 𝑅)
1614, 15syl6eqr 2804 . . . . . 6 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → (1𝑜 eval 𝑟) = 𝑄)
1712, 16coeq12d 5434 . . . . 5 ((𝑟 = 𝑅𝑏 = (Base‘𝑟)) → ((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
182, 17csbied 3693 . . . 4 (𝑟 = 𝑅(Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
19 df-evl1 19875 . . . 4 eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏𝑚 (𝑏𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1𝑜 × {𝑦})))) ∘ (1𝑜 eval 𝑟)))
20 ovex 6833 . . . . . 6 (𝐵𝑚 (𝐵𝑚 1𝑜)) ∈ V
2120mptex 6642 . . . . 5 (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∈ V
22 ovex 6833 . . . . . 6 (1𝑜 eval 𝑅) ∈ V
2315, 22eqeltri 2827 . . . . 5 𝑄 ∈ V
2421, 23coex 7275 . . . 4 ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄) ∈ V
2518, 19, 24fvmpt 6436 . . 3 (𝑅 ∈ V → (eval1𝑅) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
261, 25syl5eq 2798 . 2 (𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
27 fvprc 6338 . . . . 5 𝑅 ∈ V → (eval1𝑅) = ∅)
281, 27syl5eq 2798 . . . 4 𝑅 ∈ V → 𝑂 = ∅)
29 co02 5802 . . . 4 ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅) = ∅
3028, 29syl6eqr 2804 . . 3 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅))
31 df-evl 19701 . . . . . . 7 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
3231reldmmpt2 6928 . . . . . 6 Rel dom eval
3332ovprc2 6840 . . . . 5 𝑅 ∈ V → (1𝑜 eval 𝑅) = ∅)
3415, 33syl5eq 2798 . . . 4 𝑅 ∈ V → 𝑄 = ∅)
3534coeq2d 5432 . . 3 𝑅 ∈ V → ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄) = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ∅))
3630, 35eqtr4d 2789 . 2 𝑅 ∈ V → 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄))
3726, 36pm2.61i 176 1 𝑂 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1624  wcel 2131  Vcvv 3332  csb 3666  c0 4050  {csn 4313  cmpt 4873   × cxp 5256  ccom 5262  cfv 6041  (class class class)co 6805  1𝑜c1o 7714  𝑚 cmap 8015  Basecbs 16051   evalSub ces 19698   eval cevl 19699  eval1ce1 19873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-evl 19701  df-evl1 19875
This theorem is referenced by:  evl1val  19887  evl1fval1lem  19888  evl1rhm  19890  pf1rcl  19907
  Copyright terms: Public domain W3C validator