![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6222 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
2 | tz6.12-2 6220 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∈ wcel 2030 ∃!weu 2498 Vcvv 3231 ∅c0 3948 class class class wbr 4685 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 ax-pow 4873 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 |
This theorem is referenced by: dffv3 6225 fvrn0 6254 ndmfv 6256 fv2prc 6266 csbfv 6271 dffv2 6310 brfvopabrbr 6318 fvmpti 6320 fvmptnf 6341 fvmptrabfv 6348 fvunsn 6486 fvmptopab 6739 brfvopab 6742 1stval 7212 2ndval 7213 fipwuni 8373 fipwss 8376 tctr 8654 ranklim 8745 rankuni 8764 alephsing 9136 itunisuc 9279 itunitc1 9280 itunitc 9281 tskmcl 9701 hashfn 13202 s1prc 13420 trclfvg 13800 trclfvcotrg 13801 strfvss 15927 strfvi 15960 setsnid 15962 elbasfv 15967 ressbas 15977 resslem 15980 firest 16140 topnval 16142 homffval 16397 comfffval 16405 oppchomfval 16421 oppcbas 16425 xpcbas 16865 lubfun 17027 glbfun 17040 oduval 17177 oduleval 17178 odumeet 17187 odujoin 17189 oduclatb 17191 ipopos 17207 isipodrs 17208 plusffval 17294 grpidval 17307 gsum0 17325 ismnd 17344 frmdplusg 17438 frmd0 17444 dfgrp2e 17495 grpinvfval 17507 grpinvfvi 17510 grpsubfval 17511 mulgfval 17589 mulgfvi 17592 cntrval 17798 cntzval 17800 cntzrcl 17806 oppgval 17823 oppgplusfval 17824 symgbas 17846 symgplusg 17855 lactghmga 17870 pmtrfrn 17924 psgnfval 17966 odfval 17998 oppglsm 18103 efgval 18176 mgpval 18538 mgpplusg 18539 ringidval 18549 opprval 18670 opprmulfval 18671 dvdsrval 18691 invrfval 18719 dvrfval 18730 staffval 18895 scaffval 18929 islss 18983 sralem 19225 srasca 19229 sravsca 19230 sraip 19231 rlmval 19239 rlmsca2 19249 2idlval 19281 rrgval 19335 asclfval 19382 psrbas 19426 psr1val 19604 vr1val 19610 ply1val 19612 ply1basfvi 19659 ply1plusgfvi 19660 psr1sca2 19669 ply1sca2 19672 ply1ascl 19676 evl1fval 19740 evl1fval1 19743 zrhval 19904 zlmlem 19913 zlmvsca 19918 chrval 19921 evpmss 19980 ipffval 20041 ocvval 20059 elocv 20060 thlbas 20088 thlle 20089 thloc 20091 pjfval 20098 toponsspwpw 20774 istps 20786 tgdif0 20844 indislem 20852 txindislem 21484 fsubbas 21718 filuni 21736 ussval 22110 isusp 22112 nmfval 22440 tnglem 22491 tngds 22499 tchval 23063 deg1fval 23885 deg1fvi 23890 uc1pval 23944 mon1pval 23946 ttglem 25801 vtxval 25923 iedgval 25924 vtxvalprc 25982 iedgvalprc 25983 edgval 25986 prcliscplgr 26365 wwlks 26783 wwlksn 26785 clwwlk 26951 clwwlkn 26985 clwwlknOLD 26986 clwwlknonmpt2 27062 vafval 27586 bafval 27587 smfval 27588 vsfval 27616 resvsca 29958 resvlem 29959 mvtval 31523 mexval 31525 mexval2 31526 mdvval 31527 mrsubfval 31531 mrsubrn 31536 mrsub0 31539 mrsubf 31540 mrsubccat 31541 mrsubcn 31542 mrsubco 31544 mrsubvrs 31545 msubfval 31547 elmsubrn 31551 msubrn 31552 msubf 31555 mvhfval 31556 mpstval 31558 msrfval 31560 mstaval 31567 mclsrcl 31584 mppsval 31595 mthmval 31598 sltval2 31934 sltintdifex 31939 fvsingle 32152 funpartfv 32177 fullfunfv 32179 rankeq1o 32403 atbase 34894 llnbase 35113 lplnbase 35138 lvolbase 35182 lhpbase 35602 mzpmfp 37627 kelac1 37950 mendbas 38071 mendplusgfval 38072 mendmulrfval 38074 mendsca 38076 mendvscafval 38077 brfvimex 38641 clsneibex 38717 neicvgbex 38727 upwlkbprop 42044 sprssspr 42056 sprsymrelfvlem 42065 |
Copyright terms: Public domain | W3C validator |