Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcomptf Structured version   Visualization version   GIF version

Theorem fcomptf 29291
Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 6355. (Contributed by Thierry Arnoux, 30-Jun-2017.)
Hypothesis
Ref Expression
fcomptf.1 𝑥𝐵
Assertion
Ref Expression
fcomptf ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem fcomptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2767 . . . . 5 𝑥𝐴
2 nfcv 2767 . . . . 5 𝑥𝐷
3 nfcv 2767 . . . . 5 𝑥𝐸
41, 2, 3nff 6000 . . . 4 𝑥 𝐴:𝐷𝐸
5 fcomptf.1 . . . . 5 𝑥𝐵
6 nfcv 2767 . . . . 5 𝑥𝐶
75, 6, 2nff 6000 . . . 4 𝑥 𝐵:𝐶𝐷
84, 7nfan 1830 . . 3 𝑥(𝐴:𝐷𝐸𝐵:𝐶𝐷)
9 ffvelrn 6314 . . . . 5 ((𝐵:𝐶𝐷𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
109adantll 749 . . . 4 (((𝐴:𝐷𝐸𝐵:𝐶𝐷) ∧ 𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
1110ex 450 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝑥𝐶 → (𝐵𝑥) ∈ 𝐷))
128, 11ralrimi 2956 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → ∀𝑥𝐶 (𝐵𝑥) ∈ 𝐷)
13 ffn 6004 . . . 4 (𝐵:𝐶𝐷𝐵 Fn 𝐶)
1413adantl 482 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 Fn 𝐶)
155dffn5f 6210 . . 3 (𝐵 Fn 𝐶𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
1614, 15sylib 208 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
17 ffn 6004 . . . 4 (𝐴:𝐷𝐸𝐴 Fn 𝐷)
1817adantr 481 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 Fn 𝐷)
19 dffn5 6199 . . 3 (𝐴 Fn 𝐷𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
2018, 19sylib 208 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
21 fveq2 6150 . 2 (𝑦 = (𝐵𝑥) → (𝐴𝑦) = (𝐴‘(𝐵𝑥)))
2212, 16, 20, 21fmptcof 6353 1 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wnfc 2754  cmpt 4678  ccom 5083   Fn wfn 5845  wf 5846  cfv 5850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858
This theorem is referenced by:  ofoprabco  29298
  Copyright terms: Public domain W3C validator