MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffn5 Structured version   Visualization version   GIF version

Theorem dffn5 6724
Description: Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dffn5 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffn5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6454 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6047 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 220 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6459 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 415 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 565 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2828 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
8 fnbrfvb 6718 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
97, 8syl5bb 285 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 581 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 284 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
1211opabbidv 5132 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
133, 12eqtrd 2856 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
14 df-mpt 5147 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
1513, 14syl6eqr 2874 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
16 fvex 6683 . . . 4 (𝐹𝑥) ∈ V
17 eqid 2821 . . . 4 (𝑥𝐴 ↦ (𝐹𝑥)) = (𝑥𝐴 ↦ (𝐹𝑥))
1816, 17fnmpti 6491 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴
19 fneq1 6444 . . 3 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → (𝐹 Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝐹𝑥)) Fn 𝐴))
2018, 19mpbiri 260 . 2 (𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)) → 𝐹 Fn 𝐴)
2115, 20impbii 211 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5066  {copab 5128  cmpt 5146  Rel wrel 5560   Fn wfn 6350  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363
This theorem is referenced by:  fnrnfv  6725  feqmptd  6733  dffn5f  6736  eqfnfv  6802  fndmin  6815  fcompt  6895  funiun  6909  resfunexg  6978  eufnfv  6991  nvocnv  7038  fnov  7282  offveqb  7431  caofinvl  7436  oprabco  7791  df1st2  7793  df2nd2  7794  curry1  7799  curry2  7802  resixpfo  8500  pw2f1olem  8621  marypha2lem3  8901  seqof  13428  prmrec  16258  prdsbascl  16756  xpsaddlem  16846  xpsvsca  16850  oppccatid  16989  fuclid  17236  fucrid  17237  curfuncf  17488  yonedainv  17531  yonffthlem  17532  prdsidlem  17943  pws0g  17947  prdsinvlem  18208  gsummptmhm  19060  staffn  19620  prdslmodd  19741  ofco2  21060  1mavmul  21157  cnmpt1st  22276  cnmpt2nd  22277  ptunhmeo  22416  xpsxmetlem  22989  xpsmet  22992  itg2split  24350  pserulm  25010  pserdvlem2  25016  logcn  25230  logblog  25370  emcllem5  25577  gamcvg2lem  25636  crctcshlem4  27598  eucrct2eupth  28024  fcomptf  30403  gsummpt2d  30687  pl1cn  31198  esumpcvgval  31337  esumcvgsum  31347  eulerpartgbij  31630  dstfrvclim1  31735  ptpconn  32480  knoppcnlem8  33839  knoppcnlem11  33842  ctbssinf  34690  curfv  34887  ovoliunnfl  34949  voliunnfl  34951  fnopabco  35013  upixp  35019  prdsbnd  35086  prdstotbnd  35087  prdsbnd2  35088  fgraphopab  39830  expgrowthi  40685  expgrowth  40687  uzmptshftfval  40698  dvcosre  42216  fourierdlem56  42467  fourierdlem62  42473  fundcmpsurbijinjpreimafv  43587  fundcmpsurinjimaid  43591  fdmdifeqresdif  44410  offvalfv  44411
  Copyright terms: Public domain W3C validator