MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmf Structured version   Visualization version   GIF version

Theorem fmf 22553
Description: Pushing-forward via a function induces a mapping on filters. (Contributed by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fmf ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))

Proof of Theorem fmf
Dummy variables 𝑓 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7189 . . . 4 (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))) ∈ V
2 eqid 2821 . . . 4 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
31, 2fnmpti 6491 . . 3 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) Fn (fBas‘𝑌)
4 df-fm 22546 . . . . . 6 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))))
54a1i 11 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))))))
6 dmeq 5772 . . . . . . . . 9 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
76adantl 484 . . . . . . . 8 ((𝑥 = 𝑋𝑓 = 𝐹) → dom 𝑓 = dom 𝐹)
8 fdm 6522 . . . . . . . . 9 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
983ad2ant3 1131 . . . . . . . 8 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → dom 𝐹 = 𝑌)
107, 9sylan9eqr 2878 . . . . . . 7 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → dom 𝑓 = 𝑌)
1110fveq2d 6674 . . . . . 6 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (fBas‘dom 𝑓) = (fBas‘𝑌))
12 id 22 . . . . . . . 8 (𝑥 = 𝑋𝑥 = 𝑋)
13 imaeq1 5924 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1413mpteq2dv 5162 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑦𝑏 ↦ (𝑓𝑦)) = (𝑦𝑏 ↦ (𝐹𝑦)))
1514rneqd 5808 . . . . . . . 8 (𝑓 = 𝐹 → ran (𝑦𝑏 ↦ (𝑓𝑦)) = ran (𝑦𝑏 ↦ (𝐹𝑦)))
1612, 15oveqan12d 7175 . . . . . . 7 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
1716adantl 484 . . . . . 6 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
1811, 17mpteq12dv 5151 . . . . 5 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
19 elex 3512 . . . . . 6 (𝑋𝐴𝑋 ∈ V)
20193ad2ant1 1129 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → 𝑋 ∈ V)
21 fex2 7638 . . . . . 6 ((𝐹:𝑌𝑋𝑌𝐵𝑋𝐴) → 𝐹 ∈ V)
22213com13 1120 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → 𝐹 ∈ V)
23 fvex 6683 . . . . . . 7 (fBas‘𝑌) ∈ V
2423mptex 6986 . . . . . 6 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V
2524a1i 11 . . . . 5 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V)
265, 18, 20, 22, 25ovmpod 7302 . . . 4 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
2726fneq1d 6446 . . 3 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ↔ (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) Fn (fBas‘𝑌)))
283, 27mpbiri 260 . 2 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
29 simpl1 1187 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋𝐴)
30 simpr 487 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌))
31 simpl3 1189 . . . 4 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌𝑋)
32 fmfil 22552 . . . 4 ((𝑋𝐴𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
3329, 30, 31, 32syl3anc 1367 . . 3 (((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
3433ralrimiva 3182 . 2 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → ∀𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋))
35 ffnfv 6882 . 2 ((𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋) ↔ ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ∀𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) ∈ (Fil‘𝑋)))
3628, 34, 35sylanbrc 585 1 ((𝑋𝐴𝑌𝐵𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cmpt 5146  dom cdm 5555  ran crn 5556  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  fBascfbas 20533  filGencfg 20534  Filcfil 22453   FilMap cfm 22541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-fbas 20542  df-fg 20543  df-fil 22454  df-fm 22546
This theorem is referenced by:  rnelfm  22561
  Copyright terms: Public domain W3C validator