MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2nd Structured version   Visualization version   GIF version

Theorem fo2nd 7710
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5332 . . . . 5 {𝑥} ∈ V
21rnex 7617 . . . 4 ran {𝑥} ∈ V
32uniex 7467 . . 3 ran {𝑥} ∈ V
4 df-2nd 7690 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
53, 4fnmpti 6491 . 2 2nd Fn V
64rnmpt 5827 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
7 vex 3497 . . . . 5 𝑦 ∈ V
8 opex 5356 . . . . . 6 𝑦, 𝑦⟩ ∈ V
97, 7op2nda 6085 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
109eqcomi 2830 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
11 sneq 4577 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1211rneqd 5808 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1312unieqd 4852 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413rspceeqv 3638 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
158, 10, 14mp2an 690 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
167, 152th 266 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1716abbi2i 2953 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
186, 17eqtr4i 2847 . 2 ran 2nd = V
19 df-fo 6361 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
205, 18, 19mpbir2an 709 1 2nd :V–onto→V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  Vcvv 3494  {csn 4567  cop 4573   cuni 4838  ran crn 5556   Fn wfn 6350  ontowfo 6353  2nd c2nd 7688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-fun 6357  df-fn 6358  df-fo 6361  df-2nd 7690
This theorem is referenced by:  br2ndeqg  7712  2ndcof  7720  df2nd2  7794  2ndconst  7796  iunfo  9961  cdaf  17310  2ndf1  17445  2ndf2  17446  2ndfcl  17448  gsum2dlem2  19091  upxp  22231  uptx  22233  cnmpt2nd  22277  uniiccdif  24179  xppreima  30394  xppreima2  30395  2ndpreima  30443  fsuppcurry1  30461  gsummpt2d  30687  cnre2csqima  31154  filnetlem4  33729
  Copyright terms: Public domain W3C validator