Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsuppcurry1 Structured version   Visualization version   GIF version

Theorem fsuppcurry1 30461
Description: Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023.)
Hypotheses
Ref Expression
fsuppcurry1.g 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
fsuppcurry1.z (𝜑𝑍𝑈)
fsuppcurry1.a (𝜑𝐴𝑉)
fsuppcurry1.b (𝜑𝐵𝑊)
fsuppcurry1.f (𝜑𝐹 Fn (𝐴 × 𝐵))
fsuppcurry1.c (𝜑𝐶𝐴)
fsuppcurry1.1 (𝜑𝐹 finSupp 𝑍)
Assertion
Ref Expression
fsuppcurry1 (𝜑𝐺 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑈(𝑥)   𝐺(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppcurry1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsuppcurry1.g . . . 4 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
2 oveq2 7164 . . . . 5 (𝑥 = 𝑦 → (𝐶𝐹𝑥) = (𝐶𝐹𝑦))
32cbvmptv 5169 . . . 4 (𝑥𝐵 ↦ (𝐶𝐹𝑥)) = (𝑦𝐵 ↦ (𝐶𝐹𝑦))
41, 3eqtri 2844 . . 3 𝐺 = (𝑦𝐵 ↦ (𝐶𝐹𝑦))
5 fsuppcurry1.b . . . 4 (𝜑𝐵𝑊)
65mptexd 6987 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝐶𝐹𝑦)) ∈ V)
74, 6eqeltrid 2917 . 2 (𝜑𝐺 ∈ V)
81funmpt2 6394 . . 3 Fun 𝐺
98a1i 11 . 2 (𝜑 → Fun 𝐺)
10 fsuppcurry1.z . 2 (𝜑𝑍𝑈)
11 fo2nd 7710 . . . . 5 2nd :V–onto→V
12 fofun 6591 . . . . 5 (2nd :V–onto→V → Fun 2nd )
1311, 12ax-mp 5 . . . 4 Fun 2nd
14 funres 6397 . . . 4 (Fun 2nd → Fun (2nd ↾ (V × V)))
1513, 14mp1i 13 . . 3 (𝜑 → Fun (2nd ↾ (V × V)))
16 fsuppcurry1.1 . . . 4 (𝜑𝐹 finSupp 𝑍)
1716fsuppimpd 8840 . . 3 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
18 imafi 8817 . . 3 ((Fun (2nd ↾ (V × V)) ∧ (𝐹 supp 𝑍) ∈ Fin) → ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
1915, 17, 18syl2anc 586 . 2 (𝜑 → ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin)
20 ovexd 7191 . . . 4 ((𝜑𝑦𝐵) → (𝐶𝐹𝑦) ∈ V)
2120, 4fmptd 6878 . . 3 (𝜑𝐺:𝐵⟶V)
22 eldif 3946 . . . 4 (𝑦 ∈ (𝐵 ∖ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))) ↔ (𝑦𝐵 ∧ ¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))))
23 fsuppcurry1.c . . . . . . . . . . . 12 (𝜑𝐶𝐴)
2423ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝐶𝐴)
25 simplr 767 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦𝐵)
2624, 25opelxpd 5593 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵))
27 df-ov 7159 . . . . . . . . . . 11 (𝐶𝐹𝑦) = (𝐹‘⟨𝐶, 𝑦⟩)
28 ovexd 7191 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐶𝐹𝑦) ∈ V)
291, 2, 25, 28fvmptd3 6791 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) = (𝐶𝐹𝑦))
30 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ¬ (𝐺𝑦) = 𝑍)
3130neqned 3023 . . . . . . . . . . . 12 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐺𝑦) ≠ 𝑍)
3229, 31eqnetrrd 3084 . . . . . . . . . . 11 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐶𝐹𝑦) ≠ 𝑍)
3327, 32eqnetrrid 3091 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)
34 fsuppcurry1.f . . . . . . . . . . . 12 (𝜑𝐹 Fn (𝐴 × 𝐵))
35 fsuppcurry1.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
3635, 5xpexd 7474 . . . . . . . . . . . 12 (𝜑 → (𝐴 × 𝐵) ∈ V)
37 elsuppfn 7838 . . . . . . . . . . . 12 ((𝐹 Fn (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V ∧ 𝑍𝑈) → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
3834, 36, 10, 37syl3anc 1367 . . . . . . . . . . 11 (𝜑 → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
3938ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍) ↔ (⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ (𝐹‘⟨𝐶, 𝑦⟩) ≠ 𝑍)))
4026, 33, 39mpbir2and 711 . . . . . . . . 9 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ⟨𝐶, 𝑦⟩ ∈ (𝐹 supp 𝑍))
41 simpr 487 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝑧 = ⟨𝐶, 𝑦⟩)
4241fveq2d 6674 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘𝑧) = ((2nd ↾ (V × V))‘⟨𝐶, 𝑦⟩))
43 xpss 5571 . . . . . . . . . . . 12 (𝐴 × 𝐵) ⊆ (V × V)
4426adantr 483 . . . . . . . . . . . 12 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ⟨𝐶, 𝑦⟩ ∈ (𝐴 × 𝐵))
4543, 44sseldi 3965 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ⟨𝐶, 𝑦⟩ ∈ (V × V))
4645fvresd 6690 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘⟨𝐶, 𝑦⟩) = (2nd ‘⟨𝐶, 𝑦⟩))
4724adantr 483 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝐶𝐴)
4825adantr 483 . . . . . . . . . . 11 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → 𝑦𝐵)
49 op2ndg 7702 . . . . . . . . . . 11 ((𝐶𝐴𝑦𝐵) → (2nd ‘⟨𝐶, 𝑦⟩) = 𝑦)
5047, 48, 49syl2anc 586 . . . . . . . . . 10 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → (2nd ‘⟨𝐶, 𝑦⟩) = 𝑦)
5142, 46, 503eqtrd 2860 . . . . . . . . 9 ((((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) ∧ 𝑧 = ⟨𝐶, 𝑦⟩) → ((2nd ↾ (V × V))‘𝑧) = 𝑦)
5240, 51rspcedeq1vd 3629 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦)
53 fofn 6592 . . . . . . . . . . . . 13 (2nd :V–onto→V → 2nd Fn V)
54 fnresin 30371 . . . . . . . . . . . . 13 (2nd Fn V → (2nd ↾ (V × V)) Fn (V ∩ (V × V)))
5511, 53, 54mp2b 10 . . . . . . . . . . . 12 (2nd ↾ (V × V)) Fn (V ∩ (V × V))
56 ssv 3991 . . . . . . . . . . . . . 14 (V × V) ⊆ V
57 sseqin2 4192 . . . . . . . . . . . . . 14 ((V × V) ⊆ V ↔ (V ∩ (V × V)) = (V × V))
5856, 57mpbi 232 . . . . . . . . . . . . 13 (V ∩ (V × V)) = (V × V)
5958fneq2i 6451 . . . . . . . . . . . 12 ((2nd ↾ (V × V)) Fn (V ∩ (V × V)) ↔ (2nd ↾ (V × V)) Fn (V × V))
6055, 59mpbi 232 . . . . . . . . . . 11 (2nd ↾ (V × V)) Fn (V × V)
6160a1i 11 . . . . . . . . . 10 (𝜑 → (2nd ↾ (V × V)) Fn (V × V))
62 suppssdm 7843 . . . . . . . . . . . 12 (𝐹 supp 𝑍) ⊆ dom 𝐹
6334fndmd 6456 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (𝐴 × 𝐵))
6462, 63sseqtrid 4019 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 𝑍) ⊆ (𝐴 × 𝐵))
6564, 43sstrdi 3979 . . . . . . . . . 10 (𝜑 → (𝐹 supp 𝑍) ⊆ (V × V))
6661, 65fvelimabd 6738 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦))
6766ad2antrr 724 . . . . . . . 8 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → (𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ↔ ∃𝑧 ∈ (𝐹 supp 𝑍)((2nd ↾ (V × V))‘𝑧) = 𝑦))
6852, 67mpbird 259 . . . . . . 7 (((𝜑𝑦𝐵) ∧ ¬ (𝐺𝑦) = 𝑍) → 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))
6968ex 415 . . . . . 6 ((𝜑𝑦𝐵) → (¬ (𝐺𝑦) = 𝑍𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍))))
7069con1d 147 . . . . 5 ((𝜑𝑦𝐵) → (¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) → (𝐺𝑦) = 𝑍))
7170impr 457 . . . 4 ((𝜑 ∧ (𝑦𝐵 ∧ ¬ 𝑦 ∈ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7222, 71sylan2b 595 . . 3 ((𝜑𝑦 ∈ (𝐵 ∖ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → (𝐺𝑦) = 𝑍)
7321, 72suppss 7860 . 2 (𝜑 → (𝐺 supp 𝑍) ⊆ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))
74 suppssfifsupp 8848 . 2 (((𝐺 ∈ V ∧ Fun 𝐺𝑍𝑈) ∧ (((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)) ∈ Fin ∧ (𝐺 supp 𝑍) ⊆ ((2nd ↾ (V × V)) “ (𝐹 supp 𝑍)))) → 𝐺 finSupp 𝑍)
757, 9, 10, 19, 73, 74syl32anc 1374 1 (𝜑𝐺 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wrex 3139  Vcvv 3494  cdif 3933  cin 3935  wss 3936  cop 4573   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555  cres 5557  cima 5558  Fun wfun 6349   Fn wfn 6350  ontowfo 6353  cfv 6355  (class class class)co 7156  2nd c2nd 7688   supp csupp 7830  Fincfn 8509   finSupp cfsupp 8833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-supp 7831  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-fin 8513  df-fsupp 8834
This theorem is referenced by:  fedgmullem2  31026
  Copyright terms: Public domain W3C validator