Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fpr3 Structured version   Visualization version   GIF version

Theorem fpr3 33162
Description: Law of founded partial recursion, part three. Finally, we show that 𝐹 is unique. We do this by showing that any function 𝐻 with the same properties we proved of 𝐹 in fpr1 33160 and fpr2 33161 is identical to 𝐹. (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
fprr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
fpr3 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
Distinct variable groups:   𝑧,𝐹   𝑧,𝑅   𝑧,𝐴   𝑧,𝐺   𝑧,𝐻

Proof of Theorem fpr3
StepHypRef Expression
1 simpl 485 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴))
2 fprr.1 . . . . 5 𝐹 = frecs(𝑅, 𝐴, 𝐺)
32fpr1 33160 . . . 4 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
42fpr2 33161 . . . . 5 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑧𝐴) → (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
54ralrimiva 3181 . . . 4 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
63, 5jca 514 . . 3 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
76adantr 483 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
8 simpr 487 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧)))))
9 fpr3g 33143 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝑧𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
101, 7, 8, 9syl3anc 1366 1 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ (𝐻 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐻𝑧) = (𝑧𝐺(𝐻 ↾ Pred(𝑅, 𝐴, 𝑧))))) → 𝐹 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wral 3137   Po wpo 5465   Fr wfr 5504   Se wse 5505  cres 5550  Predcpred 6140   Fn wfn 6343  cfv 6348  (class class class)co 7149  frecscfrecs 33138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-fr 5507  df-se 5508  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-frecs 33139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator