MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplitfpar Structured version   Visualization version   GIF version

Theorem fsplitfpar 7814
Description: Merge two functions with a common argument in parallel. Combination of fsplit 7812 and fpar 7811. (Contributed by AV, 3-Jan-2024.)
Hypotheses
Ref Expression
fsplitfpar.h 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
fsplitfpar.s 𝑆 = ((1st ↾ I ) ↾ 𝐴)
Assertion
Ref Expression
fsplitfpar ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺
Allowed substitution hints:   𝑆(𝑥)   𝐻(𝑥)

Proof of Theorem fsplitfpar
Dummy variables 𝑎 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsplitfpar.s . . . . . . . . . 10 𝑆 = ((1st ↾ I ) ↾ 𝐴)
2 fsplit 7812 . . . . . . . . . . 11 (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)
32reseq1i 5849 . . . . . . . . . 10 ((1st ↾ I ) ↾ 𝐴) = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)
41, 3eqtri 2844 . . . . . . . . 9 𝑆 = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)
54fveq1i 6671 . . . . . . . 8 (𝑆𝑎) = (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎)
65a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑆𝑎) = (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎))
7 fvres 6689 . . . . . . . . 9 (𝑎𝐴 → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)‘𝑎))
8 eqidd 2822 . . . . . . . . . 10 (𝑎𝐴 → (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩))
9 id 22 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 = 𝑎)
109, 9opeq12d 4811 . . . . . . . . . . 11 (𝑥 = 𝑎 → ⟨𝑥, 𝑥⟩ = ⟨𝑎, 𝑎⟩)
1110adantl 484 . . . . . . . . . 10 ((𝑎𝐴𝑥 = 𝑎) → ⟨𝑥, 𝑥⟩ = ⟨𝑎, 𝑎⟩)
12 elex 3512 . . . . . . . . . 10 (𝑎𝐴𝑎 ∈ V)
13 opex 5356 . . . . . . . . . . 11 𝑎, 𝑎⟩ ∈ V
1413a1i 11 . . . . . . . . . 10 (𝑎𝐴 → ⟨𝑎, 𝑎⟩ ∈ V)
158, 11, 12, 14fvmptd 6775 . . . . . . . . 9 (𝑎𝐴 → ((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)‘𝑎) = ⟨𝑎, 𝑎⟩)
167, 15eqtrd 2856 . . . . . . . 8 (𝑎𝐴 → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ⟨𝑎, 𝑎⟩)
1716adantl 484 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (((𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) ↾ 𝐴)‘𝑎) = ⟨𝑎, 𝑎⟩)
186, 17eqtrd 2856 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑆𝑎) = ⟨𝑎, 𝑎⟩)
1918fveq2d 6674 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘(𝑆𝑎)) = (𝐻‘⟨𝑎, 𝑎⟩))
20 df-ov 7159 . . . . . 6 (𝑎𝐻𝑎) = (𝐻‘⟨𝑎, 𝑎⟩)
21 fsplitfpar.h . . . . . . . . 9 𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))
2221fpar 7811 . . . . . . . 8 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐻 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
2322adantr 483 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → 𝐻 = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩))
24 fveq2 6670 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐹𝑥) = (𝐹𝑎))
2524adantr 483 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐹𝑥) = (𝐹𝑎))
26 fveq2 6670 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
2726adantl 484 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑎) → (𝐺𝑦) = (𝐺𝑎))
2825, 27opeq12d 4811 . . . . . . . 8 ((𝑥 = 𝑎𝑦 = 𝑎) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
2928adantl 484 . . . . . . 7 ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) ∧ (𝑥 = 𝑎𝑦 = 𝑎)) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
30 simpr 487 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
31 opex 5356 . . . . . . . 8 ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V
3231a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ⟨(𝐹𝑎), (𝐺𝑎)⟩ ∈ V)
3323, 29, 30, 30, 32ovmpod 7302 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝑎𝐻𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
3420, 33syl5eqr 2870 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘⟨𝑎, 𝑎⟩) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
3519, 34eqtrd 2856 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → (𝐻‘(𝑆𝑎)) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
36 eqid 2821 . . . . . . . . . 10 (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) = (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩)
3736fnmpt 6488 . . . . . . . . 9 (∀𝑎 ∈ V ⟨𝑎, 𝑎⟩ ∈ V → (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V)
3813a1i 11 . . . . . . . . 9 (𝑎 ∈ V → ⟨𝑎, 𝑎⟩ ∈ V)
3937, 38mprg 3152 . . . . . . . 8 (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V
40 ssv 3991 . . . . . . . 8 𝐴 ⊆ V
41 fnssres 6470 . . . . . . . 8 (((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V ∧ 𝐴 ⊆ V) → ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
4239, 40, 41mp2an 690 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴
43 fsplit 7812 . . . . . . . . . 10 (1st ↾ I ) = (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩)
4443reseq1i 5849 . . . . . . . . 9 ((1st ↾ I ) ↾ 𝐴) = ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
451, 44eqtri 2844 . . . . . . . 8 𝑆 = ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
4645fneq1i 6450 . . . . . . 7 (𝑆 Fn 𝐴 ↔ ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
4742, 46mpbir 233 . . . . . 6 𝑆 Fn 𝐴
4847a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑆 Fn 𝐴)
49 fvco2 6758 . . . . 5 ((𝑆 Fn 𝐴𝑎𝐴) → ((𝐻𝑆)‘𝑎) = (𝐻‘(𝑆𝑎)))
5048, 49sylan 582 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝐻𝑆)‘𝑎) = (𝐻‘(𝑆𝑎)))
51 fveq2 6670 . . . . . . 7 (𝑥 = 𝑎 → (𝐺𝑥) = (𝐺𝑎))
5224, 51opeq12d 4811 . . . . . 6 (𝑥 = 𝑎 → ⟨(𝐹𝑥), (𝐺𝑥)⟩ = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
53 eqid 2821 . . . . . 6 (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)
5452, 53, 31fvmpt 6768 . . . . 5 (𝑎𝐴 → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
5554adantl 484 . . . 4 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎) = ⟨(𝐹𝑎), (𝐺𝑎)⟩)
5635, 50, 553eqtr4d 2866 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎𝐴) → ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎))
5756ralrimiva 3182 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎))
58 opex 5356 . . . . . . . 8 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V
5958a1i 11 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (𝑥𝐴𝑦𝐴)) → ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V)
6059ralrimivva 3191 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑥𝐴𝑦𝐴 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V)
61 eqid 2821 . . . . . . 7 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩)
6261fnmpo 7767 . . . . . 6 (∀𝑥𝐴𝑦𝐴 ⟨(𝐹𝑥), (𝐺𝑦)⟩ ∈ V → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴))
6360, 62syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴))
6422fneq1d 6446 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻 Fn (𝐴 × 𝐴) ↔ (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑦)⟩) Fn (𝐴 × 𝐴)))
6563, 64mpbird 259 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝐻 Fn (𝐴 × 𝐴))
6613a1i 11 . . . . . . . 8 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑎 ∈ V) → ⟨𝑎, 𝑎⟩ ∈ V)
6766ralrimiva 3182 . . . . . . 7 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑎 ∈ V ⟨𝑎, 𝑎⟩ ∈ V)
6867, 37syl 17 . . . . . 6 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) Fn V)
6968, 40, 41sylancl 588 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) Fn 𝐴)
7069, 46sylibr 236 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → 𝑆 Fn 𝐴)
7145rneqi 5807 . . . . . 6 ran 𝑆 = ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
72 mptima 5941 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) “ 𝐴) = ran (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩)
73 df-ima 5568 . . . . . . 7 ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) “ 𝐴) = ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴)
74 eqid 2821 . . . . . . . 8 (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩) = (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩)
7574rnmpt 5827 . . . . . . 7 ran (𝑎 ∈ (V ∩ 𝐴) ↦ ⟨𝑎, 𝑎⟩) = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
7672, 73, 753eqtr3i 2852 . . . . . 6 ran ((𝑎 ∈ V ↦ ⟨𝑎, 𝑎⟩) ↾ 𝐴) = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
7771, 76eqtri 2844 . . . . 5 ran 𝑆 = {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩}
78 elinel2 4173 . . . . . . . . 9 (𝑎 ∈ (V ∩ 𝐴) → 𝑎𝐴)
79 simpl 485 . . . . . . . . . . . 12 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → 𝑎𝐴)
8079, 79opelxpd 5593 . . . . . . . . . . 11 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴))
81 eleq1 2900 . . . . . . . . . . . 12 (𝑝 = ⟨𝑎, 𝑎⟩ → (𝑝 ∈ (𝐴 × 𝐴) ↔ ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴)))
8281adantl 484 . . . . . . . . . . 11 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → (𝑝 ∈ (𝐴 × 𝐴) ↔ ⟨𝑎, 𝑎⟩ ∈ (𝐴 × 𝐴)))
8380, 82mpbird 259 . . . . . . . . . 10 ((𝑎𝐴𝑝 = ⟨𝑎, 𝑎⟩) → 𝑝 ∈ (𝐴 × 𝐴))
8483ex 415 . . . . . . . . 9 (𝑎𝐴 → (𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴)))
8578, 84syl 17 . . . . . . . 8 (𝑎 ∈ (V ∩ 𝐴) → (𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴)))
8685rexlimiv 3280 . . . . . . 7 (∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩ → 𝑝 ∈ (𝐴 × 𝐴))
8786abssi 4046 . . . . . 6 {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩} ⊆ (𝐴 × 𝐴)
8887a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → {𝑝 ∣ ∃𝑎 ∈ (V ∩ 𝐴)𝑝 = ⟨𝑎, 𝑎⟩} ⊆ (𝐴 × 𝐴))
8977, 88eqsstrid 4015 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ran 𝑆 ⊆ (𝐴 × 𝐴))
90 fnco 6465 . . . 4 ((𝐻 Fn (𝐴 × 𝐴) ∧ 𝑆 Fn 𝐴 ∧ ran 𝑆 ⊆ (𝐴 × 𝐴)) → (𝐻𝑆) Fn 𝐴)
9165, 70, 89, 90syl3anc 1367 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) Fn 𝐴)
92 opex 5356 . . . . . 6 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V
9392a1i 11 . . . . 5 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝑥𝐴) → ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V)
9493ralrimiva 3182 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V)
9553fnmpt 6488 . . . 4 (∀𝑥𝐴 ⟨(𝐹𝑥), (𝐺𝑥)⟩ ∈ V → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
9694, 95syl 17 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴)
97 eqfnfv 6802 . . 3 (((𝐻𝑆) Fn 𝐴 ∧ (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) Fn 𝐴) → ((𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ↔ ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎)))
9891, 96, 97syl2anc 586 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩) ↔ ∀𝑎𝐴 ((𝐻𝑆)‘𝑎) = ((𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)‘𝑎)))
9957, 98mpbird 259 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐻𝑆) = (𝑥𝐴 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  cin 3935  wss 3936  cop 4573  cmpt 5146   I cid 5459   × cxp 5553  ccnv 5554  ran crn 5556  cres 5557  cima 5558  ccom 5559   Fn wfn 6350  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690
This theorem is referenced by:  offsplitfpar  7815
  Copyright terms: Public domain W3C validator