MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnco Structured version   Visualization version   GIF version

Theorem fnco 6160
Description: Composition of two functions. (Contributed by NM, 22-May-2006.)
Assertion
Ref Expression
fnco ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)

Proof of Theorem fnco
StepHypRef Expression
1 fnfun 6149 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2 fnfun 6149 . . . 4 (𝐺 Fn 𝐵 → Fun 𝐺)
3 funco 6089 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → Fun (𝐹𝐺))
41, 2, 3syl2an 495 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → Fun (𝐹𝐺))
543adant3 1127 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → Fun (𝐹𝐺))
6 fndm 6151 . . . . . . 7 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76sseq2d 3774 . . . . . 6 (𝐹 Fn 𝐴 → (ran 𝐺 ⊆ dom 𝐹 ↔ ran 𝐺𝐴))
87biimpar 503 . . . . 5 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → ran 𝐺 ⊆ dom 𝐹)
9 dmcosseq 5542 . . . . 5 (ran 𝐺 ⊆ dom 𝐹 → dom (𝐹𝐺) = dom 𝐺)
108, 9syl 17 . . . 4 ((𝐹 Fn 𝐴 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
11103adant2 1126 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = dom 𝐺)
12 fndm 6151 . . . 4 (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵)
13123ad2ant2 1129 . . 3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom 𝐺 = 𝐵)
1411, 13eqtrd 2794 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → dom (𝐹𝐺) = 𝐵)
15 df-fn 6052 . 2 ((𝐹𝐺) Fn 𝐵 ↔ (Fun (𝐹𝐺) ∧ dom (𝐹𝐺) = 𝐵))
165, 14, 15sylanbrc 701 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ran 𝐺𝐴) → (𝐹𝐺) Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wss 3715  dom cdm 5266  ran crn 5267  ccom 5270  Fun wfun 6043   Fn wfn 6044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-fun 6051  df-fn 6052
This theorem is referenced by:  fco  6219  fnfco  6230  fipreima  8439  updjudhcoinlf  8968  updjudhcoinrg  8969  cshco  13802  swrdco  13803  isofn  16656  prdsinvlem  17745  prdsmgp  18830  pws1  18836  evlslem1  19737  frlmbas  20321  frlmup3  20361  frlmup4  20362  upxp  21648  uptx  21650  0vfval  27791  xppreima2  29780  psgnfzto1stlem  30180  sseqfv1  30781  sseqfn  30782  sseqfv2  30786  volsupnfl  33785  ftc1anclem5  33820  ftc1anclem8  33823  choicefi  39909  fourierdlem42  40887
  Copyright terms: Public domain W3C validator