MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcnvcnv Structured version   Visualization version   GIF version

Theorem funcnvcnv 5924
Description: The double converse of a function is a function. (Contributed by NM, 21-Sep-2004.)
Assertion
Ref Expression
funcnvcnv (Fun 𝐴 → Fun 𝐴)

Proof of Theorem funcnvcnv
StepHypRef Expression
1 cnvcnvss 5558 . 2 𝐴𝐴
2 funss 5876 . 2 (𝐴𝐴 → (Fun 𝐴 → Fun 𝐴))
31, 2ax-mp 5 1 (Fun 𝐴 → Fun 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3560  ccnv 5083  Fun wfun 5851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-br 4624  df-opab 4684  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-fun 5859
This theorem is referenced by:  funcnvres2  5937  inpreima  6308  difpreima  6309  f1oresrab  6361  sbthlem8  8037  fin1a2lem7  9188  strlemor0OLD  15908  cnclima  21012  iscncl  21013  qtopcld  21456  qtoprest  21460  qtopcmap  21462  rnelfmlem  21696  fmfnfmlem3  21700  mbfimaicc  23340  ismbf3d  23361  i1fd  23388  gsummpt2co  29607
  Copyright terms: Public domain W3C validator