MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem7 Structured version   Visualization version   GIF version

Theorem fin1a2lem7 9828
Description: Lemma for fin1a2 9837. Split a III-infinite set in two pieces. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypotheses
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
fin1a2lem.aa 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem7 ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐸
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥,𝑦)   𝐸(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem fin1a2lem7
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 peano1 7601 . . . . . 6 ∅ ∈ ω
2 ne0i 4300 . . . . . 6 (∅ ∈ ω → ω ≠ ∅)
3 brwdomn0 9033 . . . . . 6 (ω ≠ ∅ → (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→ω))
41, 2, 3mp2b 10 . . . . 5 (ω ≼* 𝐴 ↔ ∃𝑓 𝑓:𝐴onto→ω)
5 vex 3497 . . . . . . . . . 10 𝑓 ∈ V
6 fof 6590 . . . . . . . . . 10 (𝑓:𝐴onto→ω → 𝑓:𝐴⟶ω)
7 dmfex 7641 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴⟶ω) → 𝐴 ∈ V)
85, 6, 7sylancr 589 . . . . . . . . 9 (𝑓:𝐴onto→ω → 𝐴 ∈ V)
9 cnvimass 5949 . . . . . . . . . 10 (𝑓 “ ran 𝐸) ⊆ dom 𝑓
109, 6fssdm 6530 . . . . . . . . 9 (𝑓:𝐴onto→ω → (𝑓 “ ran 𝐸) ⊆ 𝐴)
118, 10sselpwd 5230 . . . . . . . 8 (𝑓:𝐴onto→ω → (𝑓 “ ran 𝐸) ∈ 𝒫 𝐴)
12 fin1a2lem.b . . . . . . . . . . . . . 14 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
1312fin1a2lem4 9825 . . . . . . . . . . . . 13 𝐸:ω–1-1→ω
14 f1cnv 6638 . . . . . . . . . . . . 13 (𝐸:ω–1-1→ω → 𝐸:ran 𝐸1-1-onto→ω)
15 f1ofo 6622 . . . . . . . . . . . . 13 (𝐸:ran 𝐸1-1-onto→ω → 𝐸:ran 𝐸onto→ω)
1613, 14, 15mp2b 10 . . . . . . . . . . . 12 𝐸:ran 𝐸onto→ω
17 fofun 6591 . . . . . . . . . . . 12 (𝐸:ran 𝐸onto→ω → Fun 𝐸)
1816, 17ax-mp 5 . . . . . . . . . . 11 Fun 𝐸
195resex 5899 . . . . . . . . . . 11 (𝑓 ↾ (𝑓 “ ran 𝐸)) ∈ V
20 cofunexg 7650 . . . . . . . . . . 11 ((Fun 𝐸 ∧ (𝑓 ↾ (𝑓 “ ran 𝐸)) ∈ V) → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V)
2118, 19, 20mp2an 690 . . . . . . . . . 10 (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V
22 fofun 6591 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → Fun 𝑓)
23 fores 6600 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝑓 “ ran 𝐸) ⊆ dom 𝑓) → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)))
2422, 9, 23sylancl 588 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)))
25 f1f 6575 . . . . . . . . . . . . . . 15 (𝐸:ω–1-1→ω → 𝐸:ω⟶ω)
26 frn 6520 . . . . . . . . . . . . . . 15 (𝐸:ω⟶ω → ran 𝐸 ⊆ ω)
2713, 25, 26mp2b 10 . . . . . . . . . . . . . 14 ran 𝐸 ⊆ ω
28 foimacnv 6632 . . . . . . . . . . . . . 14 ((𝑓:𝐴onto→ω ∧ ran 𝐸 ⊆ ω) → (𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸)
2927, 28mpan2 689 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸)
30 foeq3 6588 . . . . . . . . . . . . 13 ((𝑓 “ (𝑓 “ ran 𝐸)) = ran 𝐸 → ((𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸))
3129, 30syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → ((𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→(𝑓 “ (𝑓 “ ran 𝐸)) ↔ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸))
3224, 31mpbid 234 . . . . . . . . . . 11 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸)
33 foco 6602 . . . . . . . . . . 11 ((𝐸:ran 𝐸onto→ω ∧ (𝑓 ↾ (𝑓 “ ran 𝐸)):(𝑓 “ ran 𝐸)–onto→ran 𝐸) → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω)
3416, 32, 33sylancr 589 . . . . . . . . . 10 (𝑓:𝐴onto→ω → (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω)
35 fowdom 9035 . . . . . . . . . 10 (((𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))) ∈ V ∧ (𝐸 ∘ (𝑓 ↾ (𝑓 “ ran 𝐸))):(𝑓 “ ran 𝐸)–onto→ω) → ω ≼* (𝑓 “ ran 𝐸))
3621, 34, 35sylancr 589 . . . . . . . . 9 (𝑓:𝐴onto→ω → ω ≼* (𝑓 “ ran 𝐸))
375cnvex 7630 . . . . . . . . . . . 12 𝑓 ∈ V
3837imaex 7621 . . . . . . . . . . 11 (𝑓 “ ran 𝐸) ∈ V
39 isfin3-2 9789 . . . . . . . . . . 11 ((𝑓 “ ran 𝐸) ∈ V → ((𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬ ω ≼* (𝑓 “ ran 𝐸)))
4038, 39ax-mp 5 . . . . . . . . . 10 ((𝑓 “ ran 𝐸) ∈ FinIII ↔ ¬ ω ≼* (𝑓 “ ran 𝐸))
4140con2bii 360 . . . . . . . . 9 (ω ≼* (𝑓 “ ran 𝐸) ↔ ¬ (𝑓 “ ran 𝐸) ∈ FinIII)
4236, 41sylib 220 . . . . . . . 8 (𝑓:𝐴onto→ω → ¬ (𝑓 “ ran 𝐸) ∈ FinIII)
43 fin1a2lem.aa . . . . . . . . . . . . . . 15 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
4412, 43fin1a2lem6 9827 . . . . . . . . . . . . . 14 (𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸)
45 f1ocnv 6627 . . . . . . . . . . . . . 14 ((𝑆 ↾ ran 𝐸):ran 𝐸1-1-onto→(ω ∖ ran 𝐸) → (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran 𝐸)
46 f1ofo 6622 . . . . . . . . . . . . . 14 ((𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–1-1-onto→ran 𝐸(𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸)
4744, 45, 46mp2b 10 . . . . . . . . . . . . 13 (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸
48 foco 6602 . . . . . . . . . . . . 13 ((𝐸:ran 𝐸onto→ω ∧ (𝑆 ↾ ran 𝐸):(ω ∖ ran 𝐸)–onto→ran 𝐸) → (𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω)
4916, 47, 48mp2an 690 . . . . . . . . . . . 12 (𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω
50 fofun 6591 . . . . . . . . . . . 12 ((𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω → Fun (𝐸(𝑆 ↾ ran 𝐸)))
5149, 50ax-mp 5 . . . . . . . . . . 11 Fun (𝐸(𝑆 ↾ ran 𝐸))
525resex 5899 . . . . . . . . . . 11 (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))) ∈ V
53 cofunexg 7650 . . . . . . . . . . 11 ((Fun (𝐸(𝑆 ↾ ran 𝐸)) ∧ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))) ∈ V) → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V)
5451, 52, 53mp2an 690 . . . . . . . . . 10 ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V
55 difss 4108 . . . . . . . . . . . . . 14 (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ 𝐴
566fdmd 6523 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → dom 𝑓 = 𝐴)
5755, 56sseqtrrid 4020 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ dom 𝑓)
58 fores 6600 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ (𝐴 ∖ (𝑓 “ ran 𝐸)) ⊆ dom 𝑓) → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
5922, 57, 58syl2anc 586 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
60 funcnvcnv 6421 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → Fun 𝑓)
61 imadif 6438 . . . . . . . . . . . . . . . 16 (Fun 𝑓 → (𝑓 “ (ω ∖ ran 𝐸)) = ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)))
6222, 60, 613syl 18 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto→ω → (𝑓 “ (ω ∖ ran 𝐸)) = ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)))
6362imaeq2d 5929 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (𝑓 “ ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸))))
64 difss 4108 . . . . . . . . . . . . . . 15 (ω ∖ ran 𝐸) ⊆ ω
65 foimacnv 6632 . . . . . . . . . . . . . . 15 ((𝑓:𝐴onto→ω ∧ (ω ∖ ran 𝐸) ⊆ ω) → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸))
6664, 65mpan2 689 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ (𝑓 “ (ω ∖ ran 𝐸))) = (ω ∖ ran 𝐸))
67 fimacnv 6839 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴⟶ω → (𝑓 “ ω) = 𝐴)
686, 67syl 17 . . . . . . . . . . . . . . . 16 (𝑓:𝐴onto→ω → (𝑓 “ ω) = 𝐴)
6968difeq1d 4098 . . . . . . . . . . . . . . 15 (𝑓:𝐴onto→ω → ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸)) = (𝐴 ∖ (𝑓 “ ran 𝐸)))
7069imaeq2d 5929 . . . . . . . . . . . . . 14 (𝑓:𝐴onto→ω → (𝑓 “ ((𝑓 “ ω) ∖ (𝑓 “ ran 𝐸))) = (𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))))
7163, 66, 703eqtr3rd 2865 . . . . . . . . . . . . 13 (𝑓:𝐴onto→ω → (𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸))
72 foeq3 6588 . . . . . . . . . . . . 13 ((𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) = (ω ∖ ran 𝐸) → ((𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)))
7371, 72syl 17 . . . . . . . . . . . 12 (𝑓:𝐴onto→ω → ((𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(𝑓 “ (𝐴 ∖ (𝑓 “ ran 𝐸))) ↔ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)))
7459, 73mpbid 234 . . . . . . . . . . 11 (𝑓:𝐴onto→ω → (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸))
75 foco 6602 . . . . . . . . . . 11 (((𝐸(𝑆 ↾ ran 𝐸)):(ω ∖ ran 𝐸)–onto→ω ∧ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→(ω ∖ ran 𝐸)) → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω)
7649, 74, 75sylancr 589 . . . . . . . . . 10 (𝑓:𝐴onto→ω → ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω)
77 fowdom 9035 . . . . . . . . . 10 ((((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))) ∈ V ∧ ((𝐸(𝑆 ↾ ran 𝐸)) ∘ (𝑓 ↾ (𝐴 ∖ (𝑓 “ ran 𝐸)))):(𝐴 ∖ (𝑓 “ ran 𝐸))–onto→ω) → ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)))
7854, 76, 77sylancr 589 . . . . . . . . 9 (𝑓:𝐴onto→ω → ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)))
79 difexg 5231 . . . . . . . . . . 11 (𝐴 ∈ V → (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ V)
80 isfin3-2 9789 . . . . . . . . . . 11 ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ V → ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬ ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸))))
818, 79, 803syl 18 . . . . . . . . . 10 (𝑓:𝐴onto→ω → ((𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII ↔ ¬ ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸))))
8281con2bid 357 . . . . . . . . 9 (𝑓:𝐴onto→ω → (ω ≼* (𝐴 ∖ (𝑓 “ ran 𝐸)) ↔ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
8378, 82mpbid 234 . . . . . . . 8 (𝑓:𝐴onto→ω → ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)
84 eleq1 2900 . . . . . . . . . . . 12 (𝑦 = (𝑓 “ ran 𝐸) → (𝑦 ∈ FinIII ↔ (𝑓 “ ran 𝐸) ∈ FinIII))
85 difeq2 4093 . . . . . . . . . . . . 13 (𝑦 = (𝑓 “ ran 𝐸) → (𝐴𝑦) = (𝐴 ∖ (𝑓 “ ran 𝐸)))
8685eleq1d 2897 . . . . . . . . . . . 12 (𝑦 = (𝑓 “ ran 𝐸) → ((𝐴𝑦) ∈ FinIII ↔ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
8784, 86orbi12d 915 . . . . . . . . . . 11 (𝑦 = (𝑓 “ ran 𝐸) → ((𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
8887notbid 320 . . . . . . . . . 10 (𝑦 = (𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ¬ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
89 ioran 980 . . . . . . . . . 10 (¬ ((𝑓 “ ran 𝐸) ∈ FinIII ∨ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII) ↔ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII))
9088, 89syl6bb 289 . . . . . . . . 9 (𝑦 = (𝑓 “ ran 𝐸) → (¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)))
9190rspcev 3623 . . . . . . . 8 (((𝑓 “ ran 𝐸) ∈ 𝒫 𝐴 ∧ (¬ (𝑓 “ ran 𝐸) ∈ FinIII ∧ ¬ (𝐴 ∖ (𝑓 “ ran 𝐸)) ∈ FinIII)) → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9211, 42, 83, 91syl12anc 834 . . . . . . 7 (𝑓:𝐴onto→ω → ∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
93 rexnal 3238 . . . . . . 7 (∃𝑦 ∈ 𝒫 𝐴 ¬ (𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) ↔ ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9492, 93sylib 220 . . . . . 6 (𝑓:𝐴onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9594exlimiv 1931 . . . . 5 (∃𝑓 𝑓:𝐴onto→ω → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
964, 95sylbi 219 . . . 4 (ω ≼* 𝐴 → ¬ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII))
9796con2i 141 . . 3 (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) → ¬ ω ≼* 𝐴)
98 isfin3-2 9789 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴))
9997, 98syl5ibr 248 . 2 (𝐴𝑉 → (∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII) → 𝐴 ∈ FinIII))
10099imp 409 1 ((𝐴𝑉 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ∈ FinIII ∨ (𝐴𝑦) ∈ FinIII)) → 𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  wss 3936  c0 4291  𝒫 cpw 4539   class class class wbr 5066  cmpt 5146  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  ccom 5559  Oncon0 6191  suc csuc 6193  Fun wfun 6349  wf 6351  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  (class class class)co 7156  ωcom 7580  2oc2o 8096   ·o comu 8100  * cwdom 9021  FinIIIcfin3 9703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-seqom 8084  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-wdom 9023  df-card 9368  df-fin4 9709  df-fin3 9710
This theorem is referenced by:  fin1a2lem8  9829
  Copyright terms: Public domain W3C validator